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This article analyzes the recent debate surrounding inclusive fitness and argues that cer-
tain limitations ascribed to it by critics—such as requiring weak selection or providing
dynamically insufficient models—are better thought of as limitations of the methodolog-
ical framework most often used with inclusive fitness (quantitative genetics). In support
of this, I show how inclusive fitness can be used with the replicator dynamics (of evo-
lutionary game theory, a methodological framework preferred by inclusive fitness crit-
ics). I conclude that much of the debate is best understood as being about the orthogonal
issue of using abstract versus idealized models.
1. Introduction. The mathematical framework of inclusive fitness was
first introduced by Hamilton (1963, 1964) in order to help explain the evo-
lution of social traits by kin selection and has helped to give new, intuitive
explanations of a variety of traits including altruism, eusociality, parental
care, and genomic imprinting (Grafen 1984; Marshall 2015, and references
therein). In calculating inclusive fitness, one looks at the effects an organ-
ism has on other organisms’ reproductive success, rather than just looking
at the organism’s own reproductive success. These effects are then weighted
by the ‘relatedness’ of the organism to those organisms it affects.

In recent years, there has been an extensive debate surrounding inclusive
fitness. Some authors argue that inclusive fitness calculations can be wrong
(van Veelen 2009), while others argue that it requires stringent assumptions
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and is less general than ‘standard’ natural selection (Nowak, Tarnita, andWil-
son 2010; Wilson 2012; Allen, Nowak, and Wilson 2013). The response is
that inclusive fitness calculations are not (merely by virtue of using the math-
ematical framework) susceptible to being wrong (Marshall 2011) and do not
require stringent assumptions like weak selection (e.g., Abbot et al. 2011;
Marshall 2015), additive payoffs (e.g., Queller 1992; Taylor andMaciejewski
2012; Birch 2014b; Birch and Okasha 2015), pairwise interactions (e.g., Tay-
lor, Wild, and Gardner 2007; Abbot et al. 2011; Marshall 2011), or special
population structures (e.g., Taylor and Frank 1996; Taylor et al. 2007; Abbot
et al. 2011; Taylor and Maciejewski 2012; Marshall 2015).

Critics of inclusive fitness often propose evolutionary game theory or pop-
ulation genetics as alternatives to the inclusive fitness framework (Nowak
et al. 2010, 2011; Traulsen 2010; Allen et al. 2013; Allen and Nowak 2015).
Often, the comparisons are made between very simple models in quantitative
genetics, which abstract away from particular details of any given population,
andmore complexmodels arising out of population genetics,whichoften take
into accountmore of the particular details. Here,wewill look at how inclusive
fitness can function in evolutionary game theory, which oftenmakes idealiza-
tions rather than abstractions inorder to achieve simplemodels.Thedifference
between these two modeling strategies (using abstractions vs. using idealiza-
tions)andhowthis relates to the inclusivefitnessdebatewill bediscussedmore
in sections 3.3 and 5. Looking at theway inclusivefitness can be incorporated
into evolutionary game theory will help show where some of the disagree-
ments about inclusive fitness arise and when inclusive fitness calculations
mightbeexpected tohave the limitationsascribed to thembycritics. Itwill also
demonstrate howwe can think of some parts of the debate as arising from dif-
ferent sides emphasizing different methodologies, rather than as disagree-
ments over inclusive fitness as a way of calculating fitness.

First, I introduce the framework of inclusive fitness and compare it to
‘neighbor-modulated’ fitness calculations in section 2. Then, in section 3, I
discuss the debate that has arisen around the inclusive fitness framework, fo-
cusing on issues that can be understood as arising from the different sides of
the debate emphasizing different methodologies. In section 4, I discuss how
models using both neighbor-modulated and inclusive fitness are connected
and provide a simple example to demonstrate these connections. Section 5
will provide a few ways to think about these connections and explain how
they canhelpusunderstand some issues in the inclusivefitness debate. Finally,
section 6 concludes.
2. Inclusive Fitness and Neighbor-Modulated Fitness

2.1. Basic Calculations. Inclusive fitness and the related concept of
neighbor-modulated fitness were first proposed by Hamilton (1964).
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Roughly, the neighbor-modulated fitness of an organism is calculated by
adding up the number of offspring the organism is expected to have from
some social interaction of interest. Inclusive fitness is an alternative math-
ematical framework in which fitness calculations track the offspring caused
by a particular organism, rather than tracking the offspring an organism ac-
tually has. The offspring caused by the organism are then weighted accord-
ing to a ‘relatedness’ parameter, which is a measure of how likely it is that
the focal organism and its social partner share genetic material, relative to
the rest of the population. The two types of fitness calculations provide al-
ternative ways of partitioning the causal structure of social interactions. A
more concrete description of the equations used in both frameworks will be
provided below.

The inclusive fitness framework might initially seem counterintuitive, so
it is helpful to start with a basic observation: in general, a trait will increase
in frequency when organisms with that trait have more offspring than the
average organism in the population. To determine whether a trait of interest
will increase in frequency, we want to see how many offspring organisms
with that trait will have. Inclusive fitness gives us this information by telling
us how many offspring are caused by an organism and how likely it is that
these offspring are had by an organism with the trait of interest.

We can calculate inclusive fitness for a focal organism, i, by looking at
the effects from all its social interactions relevant to our trait of interest.
When i interacts with other organisms, it affects its own fitness by some
amount (sii) and the fitness of another organism, j, by some amount (sij).
The genotype of organism i also predicts, to a certain extent, the genotype
of the social partner j. This relationship is described by rij. There will be
more details on calculating rij in sections 2.2 and 4, but for now we can
think of it as a measure of how likely it is that i and j share genetic material.
We can then calculate inclusive fitness as follows:

fi 5 o
j

rijsij: (1)

This fitness calculation gives us information about how the population will
evolve. It tells us how many offspring are had by organisms with the trait of
interest, and since offspring tend to be like their parents, this gives us infor-
mation about how the composition of a population is expected to change.
Note that, although it is sometimes described this way, inclusive fitness is
not calculated by counting the number of offspring an organism has and
then adding all the offspring its relatives have (weighted by relatedness).

Compare the inclusive fitness approach to the neighbor-modulated fit-
ness approach, where we look at an organism, i, and add up the effects
of its social interactions on its own number of offspring. The neighbor-
modulated fitness of organism i is then calculated as follows:
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fi 5 o
j

sji, (2)

where sji is the effect i’s social interaction with j has on i’s fitness.1 This
gives us information about how many offspring i is expected to have and,
since i’s offspring tend to be like i, about how the composition of a popula-
tion is expected to change.2

2.2. Hamilton’s Rule, the Price Equation, and Kin Selection. Hamilton’s
rule, famously associated with inclusive fitness, gives a condition for the in-
crease of an altruistic behavior, where an organism performs an action that
decreases its own fitness and increases the fitness of another. (An exam-
ple of a model of the evolution of altruistic traits will be given in sec. 4.2.)
It says simply that if the relatedness-weighted benefit of a trait exceeds its
cost, then we should expect selection to favor that trait. That is, the trait is
favored when

bR 2 c > 0, (3)

where b is the benefit to the focal organism’s social partner and c is the cost to
the focal organism.

Many results within the inclusive fitness framework, including Hamil-
ton’s rule, are derived from the Price equation, which is a general descrip-
tion of evolutionary change. Let f be the fitness of a trait in the population,
relative to the average fitness in the population. Then, the Price equation
describes expected evolutionary change in the following way:

_E pð Þ 5 Cov f , pð Þ: (4)

We can think of p as the average phenotypic value of the population, al-
though p can actually represent anything a modeler might want to keep
track of: phenotypic value, genetic value, frequency of a trait, and so on.
1. Note that the definition of neighbor-modulated fitness looks formally different from
inclusive fitness as fitness effects are unweighted, while the fitness effects in inclusive
fitness are weighted by a relatedness parameter. This apparent asymmetry disappears
at the population level when we calculate the fitness of organisms with a certain trait.
See sec. 4.1 for a calculation of neighbor-modulated fitness at the population level.
For more information on the calculations of these two types of fitness, see Frank
(1998, 48–49) and Birch (2016).

2. Technically, both inclusive fitness and neighbor-modulated fitness include a baseline
nonsocial fitness component, so these calculations are the fitness effects of the social
trait of interest.
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The change in the average value is then _E(p). The covariance term measures
how fitness changes with differences in phenotype.3

When fitness effects are additive, that is, when the fitness effects on the
recipient do not depend on the recipient’s genotype/phenotype and fitness
effects from all an organism’s social interactions can simply be added up,
we can derive equations for both inclusive fitness and neighbor-modulated
fitness from the Price equation.4 These equations are discussed further in the
appendix, but here we will look at Hamilton’s rule as derived from the Price
equation. The inclusive fitness version of Hamilton’s rule is

_E(g) > 0 when bsi2ip �
Cov p, g0ð Þ
Cov p, gð Þ 2 bsiip > 0: (5)

When we can interpret the covariance between an organism’s phenotype
and its own fitness (bsiip) as a ‘cost’ and the covariance between an organ-
ism’s phenotype and its social partner’s fitness (bsi2ip) as a ‘benefit’, we
have Hamilton’s rule, where R 5 Cov( p, g0)=Cov( p, g). This measure of re-
latedness compares the covariance between a focal organism’s phenotype,
p, and its social partner’s genotype, g 0, with the covariance between the fo-
cal organism’s phenotype and its own genotype, g (Orlove and Wood
1978). It is a measure of the degree to which the focal organism and its so-
cial partner are genetically related, or how likely it is that the fitness effects
from a trait fall on organisms with the gene(s) encoding for the trait.

Section 4.1 and the appendix discuss how inclusive fitness results de-
rived from the Price equation are related to the replicator dynamics, which
is often used in game theoretic models, using methods drawn from Page and
Nowak (2002). Section 4.2 will discuss how this definition of relatedness
matches up with the definition of relatedness we will use in game theoretic
models. Section 5.2 will discuss versions of Hamilton’s rule that do not rely
on the assumption of additive fitness components in relation to the results
discussed here.

Relatedness is commonly thought of as a measure of the average kinship
between interacting organisms when talking about kin selection for a trait.
However, it is widely acknowledged that R, and many methods for calcu-
3. There is sometimes a second term, Ef ( _p), included that measures the fitness-weighted
transmission bias, the difference between the phenotypic value of a parent and the av-
erage phenotypic value of its offspring. It is often assumed that Ef ( _p) 5 0, which is gen-
erally thought of as assuming there is no transmission bias. (Assuming that Ef ( _p) 5 0
is not exactly the same as assuming there is no transmission bias [van Veelen 2005],
but the details of what exactly it means to assume Ef ( _p) 5 0 are not crucial here.)

4. The additivity of fitness effects requires satisfying these two conditions, which Birch
(2016) refers to as actor’s control and weak additivity. Actually, only the second condi-
tion is required to derive neighbor-modulated fitness, while both are required to derive
inclusive fitness. See Birch (2016) for a discussion of this.
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lating R, can be thought of as general measures of correlation between types
(Marshall 2015). In this case, R can measure how likely it is that altruists
interact with other altruists regardless of whether that correlation is caused
by interacting with kin or by some other mechanism, such as a green-beard
effect where altruists are able to recognize and preferentially interact with
other altruists.

Because inclusive fitness is often used in describing traits that evolve via
kin selection, the terms ‘inclusive fitness’ and ‘kin selection’ are sometimes
used interchangeably. However, it is important to distinguish inclusive fit-
ness from kin selection. Inclusive fitness is a method of calculating fitness,
as described above. Kin selection, however, refers to the selection of a trait
because of benefits falling differentially on relatives. Inclusive fitness is a
mathematical framework used to describe evolution of a trait; kin selection
is a mechanism by which traits can evolve (e.g., Hamilton 1975; Grafen
2007a).

Some of the critiques of inclusive fitness models are aimed at showing
that kin selection has been less important as an evolutionary force than many
inclusive fitness theorists presume (see, e.g., Wilson 2012). Other parts of
the criticism are aimed at the mathematical framework of inclusive fitness
itself, such as claims that there are mathematical difficulties with the calcu-
lations in inclusive fitness (Nowak et al. 2010; Traulsen 2010; Wilson 2012).
This article will not discuss whether kin selection provides an adequate expla-
nation of prosocial behavior. Instead, it looks at whether inclusive fitness
can provide an adequate mathematical framework for use in evolutionary
models. Kin selection is discussed only in considering how inclusive fit-
ness can be used in models of traits evolving via kin selection. This focus
will help us see which aspects of the debate are relevant to the inclusive
fitness framework and which pertain to kin selection explanations of the
evolution of particular traits. Section 5 will discuss this further.

3. The Debate Surrounding Methods. There are several critiques levied
against the inclusive fitness framework. This article will address a couple of
particularly important critiques that, as we will see, can be understood in
light of an emphasis on different modeling techniques: the critiques that in-
clusive fitness requires the assumption of weak selection and cannot pro-
vide dynamically sufficient models. Here, I give a description of these cri-
tiques and a brief motivation for thinking of them as arising from different
sides of the debate emphasizing different methodologies. Section 5 pro-
vides a more detailed argument for this conclusion using material that will
be laid out in section 4.

3.1. Weak Selection. First, inclusive fitness has been critiqued for re-
quiring the assumption of weak selection. In assuming that there is weak
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selection, we assume that gene frequencies are not changing or that the
changes in gene frequencies are small enough to be ignored.5 This assump-
tion is used in various ways in inclusive fitness models: in employing esti-
mation methods for calculating relatedness, in ignoring higher-order effects
or certain types of population structure, and so on.

It is easy to seewhy certainmethods of estimating relatedness requireweak
selection. For example, unless very special conditions hold, estimating relat-
edness using pedigrees, or family trees, requires that selection is weak. If gene
frequencies are systematically changing in the population, the relatedness of
an organism to its siblings, for example, will change as the genetic composi-
tion of its siblings changes (Grafen 1984). However, calculating relatedness
does not, in general, require weak selection, and we can calculate how relat-
edness changes as gene frequencies change (Grafen 1985; Birch 2014a; Mar-
shall 2015).

The assumption of weak selection is also used because it allows one to
ignore nonadditive fitness effects. That is, the assumption of weak selection
has been used to ignore things like synergistic effects (where organisms re-
ceive additional benefits from cooperation if they both cooperate) or the ef-
fects of competition over resources. This is perhaps the more important use
of the assumption of weak selection, as it allows one to separate the way an
organism affects its own fitness (a self-effect) from the way it affects its so-
cial partner’s fitness (an other effect) in cases in which the simplifying as-
sumption of additive fitness components is false. Note that this critique also
applies to neighbor-modulated fitness, as the fitness effects are similarly sep-
arated into self- and other-effect components. At some points in the debate, it
seems that critics argue against the use of inclusive fitness (and neighbor-
modulated fitness) because it requires weak selection in order to achieve
the separation of fitness components. That is, without the assumption of weak
selection, one is restricted to a special case inwhichfitness effects are additive,
leading to the conclusion that inclusive fitness is less general than ‘standard’
natural selection (Nowak et al. 2010).

However, at some points it seems that critics want to claim that, whether
or not fitness effects can be split into additive components, inclusive fitness
calculations require weak selection. For instance, Nowak et al. (2010) claim
that “inclusive fitness theory cannot even be defined for nonvanishing se-
lection; thus the assumption of weak selection is automatic” (SI 14). It is
5. One way to achieve this in a model is to write down fitness as the sum of two com-
ponents: f 5 f0 1 dfx. One of these, f0, is the ‘background’ fitness, the fitness organisms
get from things that are not related to the trait of interest. This is the same for all organ-
isms. The fitness the organisms get from things related to the trait of interest, fx, is then
weighted by a parameter d, and as we take d to zero, we approach the limit of weak se-
lection. This is what Wild and Traulsen (2007) refer to as ‘d-weak selection’.
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this second, stronger, claim that will addressed here. In section 4, the claim
will be shown to be clearly false using modeling techniques from evolution-
ary game theory, one of the preferred frameworks of critics of inclusive fit-
ness. Section 5 will then discuss how, if we read the debate as about inclu-
sive fitness theory as a set of methods rather than inclusive fitness theory as
a framework for calculating fitness, we can make sense of this claim.

3.2. Dynamic Sufficiency. Inclusive fitness has also been criticized for
not being able to provide dynamically sufficient models (Nowak et al. 2010;
Wilson 2012). In a dynamically sufficient model, information about the
population at any particular time is enough to make predictions about the
population at all future times. So, information about a population at some
starting time is enough to be able to predict how the population will evolve
at all future times. In a dynamically sufficient model, one can predict whether
the population will reach an equilibrium, a state at which the population is no
longer evolving, and what the population composition will be at the equilib-
rium should it reach one.6 Critics of inclusive fitness argue that it cannot be
used to describe the evolutionary trajectories or end points of evolution
(Nowak et al. 2010, SI 4).

One reason this criticism might be leveled against inclusive fitness is the
general reliance on the Price equation, which is not dynamically sufficient.7

More specifically, the Price equation itself is neither dynamically sufficient
nor insufficient (because it merely expresses a mathematical identity), but it
can be either, depending on what sort of model it is used with. When we do
have a dynamically sufficient model, the Price equation will correctly de-
scribe evolutionary change in the model but will not itself give any addi-
tional predictions (van Veelen et al. 2012).

Because many of the results in inclusive fitness theory, like Hamilton’s
rule, are formulated in absence of a particular model, and because the focus
is often on estimating the covariances rather than calculating them from an
evolutionary model, we might not always get dynamically sufficient models
within the framework. These estimations of parameters will only predict the
evolutionary outcome if they do not change over time, which is not the case
when selection is frequency dependent (Nowak et al. 2010; Allen et al.
2013). However, as we will see in section 4, the regression methods often
6. This article only deals with deterministic models, but stochastic models can also be
dynamically sufficient. A stochastic model is dynamically sufficient when the informa-
tion about the probability distribution over types at some starting time is enough to pre-
dict how the probability distribution will evolve at all future times and to predict the lim-
iting distribution.

7. Another reason, which will be discussed further in secs. 3.3 and 5.2, is that many of
the results that do not rely on the Price equation are focused solely on equilibrium anal-
ysis. See, e.g., Taylor and Frank (1996).
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emphasized in inclusive fitness theory are intimately connected with the
sort of dynamically sufficient models preferred by critics of inclusive fit-
ness.

3.3. The Debate over Methodologies. Critics of inclusive fitness often
propose population genetics or evolutionary game theory as alternative
frameworks in which one can provide models that are dynamically suffi-
cient and that do not require stringent assumptions like weak selection
(Nowak et al. 2010, 2011; Traulsen 2010; Allen et al. 2013; Allen and
Nowak 2015). It is not immediately clear how we should read this proposal,
because although it is true that inclusive fitness tends to be used in quanti-
tative genetics models (Frank 2013) and is seen as primarily a quantitative
method in spirit (Queller 1992), it has been used in both game theoretic
(e.g., Skyrms 2002; van Veelen 2009, 2011) and population genetics mod-
els (e.g., Rousset 2002; Grafen 2007b; Lehmann and Rousset 2014). In fact,
when Hamilton (1964) first proposed using inclusive fitness, he did so in the
context of a population genetics model.

The methods used in quantitative genetics are designed to handle contin-
uously varying traits, such as height or weight. In models of social behavior,
a continuously varying trait could be the probability of performing an altru-
istic action. Models within quantitative genetics tend to emphasize simplic-
ity andmeasurability. Thesemodels usually start with observations about phe-
notypes, or other easily measurable quantities, with few assumptions about
the underlying genetics of a trait. This method of modeling involves abstrac-
tions, ignoring complicating details of the situation by merely leaving them
out while still giving a description that is literally true (Godfrey-Smith 2009).
The Price equation is often used within this approach. As mentioned in sec-
tion 2.2, many of the common results within inclusive fitness theory are de-
rived from the Price equation.

By contrast, challenges to the inclusive fitness framework tend to come
from population genetics (Frank 2013, 1153). This is an approach that tends
to start with specific assumptions (such as assuming we know the underly-
ing genetics of a trait, the mutation rates, etc.) and make predictions based
on those assumptions. Models within this approach tend to be dynamically
sufficient, meaning that information about the population at any particular
time is enough to make predictions about the population at all future times.
The use of simplifying assumptions also means that these models make use
of idealizations rather than abstractions. That is, they talk about populations
that have features we know real populations do not have (e.g., infinite pop-
ulation size, no mutations) in order to provide a simple model. One way to
think about models using idealizations is that they describe nonactual, fic-
tional populations that we take to be similar to real populations in important
ways (Godfrey-Smith 2009). As mentioned, critics propose evolutionary
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game theory as an alternative to the inclusive fitness framework.8 The rep-
licator dynamics is often used within this approach. This dynamics re-
quires many idealizing assumptions, which will be discussed in section 4.1.

The rest of this article will look more closely at the use of inclusive fit-
ness in evolutionary game theory, focusing on the replicator dynamics.
Since inclusive fitness is not as commonly used in evolutionary game the-
ory, this will help us see the benefits and drawbacks of using inclusive fit-
ness in highly idealized models. This article will also compare how inclu-
sive fitness calculations can be used in evolutionary game theory with some
of their uses in quantitative genetics. This comparison between the use of
inclusive fitness within these two traditions for studying evolution will be
helpful in understanding key issues in the debate, since they represent ex-
tremes of methodologies using idealizations and abstractions: the replicator
dynamics of evolutionary game theory is highly idealized, while the Price
equation often employed in quantitative genetics uses only abstractions. We
will see how some of the disagreement arises out of the sides of the debate
emphasizing different methodologies and how this relates to arguments
over the usefulness of Hamilton’s rule.

It is important to note that, while this distinction between abstract models
in quantitative genetics and idealized models in evolutionary game theory is
illuminating for the present purposes, it does not capture the full variety of
modeling techniques within the two methodological traditions. There are
evolutionary game theoretic models that make the assumption of weak se-
lection in order to abstract away from genetic details and fail to be dynam-
ically sufficient. For instance, Taylor and Frank (1996) employ a weak se-
lection assumption, allowing them to approximate regression coefficients
using partial derivatives, in order to use standard maximization techniques
for finding evolutionarily stable strategies (28). This method can be used to
derive ‘approximate’ versions of Hamilton’s rule, which will be described
further in section 5.2.

This article focuses on the special case in which fitness effects are addi-
tive. This is a starting point to examine how inclusive fitness can be calcu-
lated in idealized evolutionary game theoretic models and to see whether
there is any benefit to using inclusive fitness in this context. We will see that
the assumption of weak selection is not essential to the calculation of inclu-
sive fitness and that one can build dynamically sufficient models using in-
clusive fitness. There is, of course, further work to be done to see whether
8. Evolutionary game theory and population genetics are sometimes seen as having dis-
tinct methods, and other times they are seen as more or less continuous (Hammerstein
and Selten 1994, 953). They are loosely grouped together here because they are similar
in that models within both approaches tend to start with specific assumptions and be dy-
namically sufficient.
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and how this can extend into the more complicated cases generally talked
about in inclusive fitness theory. The relationship between these results and
general versions of Hamilton’s rule, which do not require weak selection and
do not assume additive fitness components, will be discussed in section 5.2.
Note, however, that while the special case of additive fitness effects will not
be applicable to many traits of interest in the real world, it is an important spe-
cial case that has been studied extensively in a variety of contexts even out-
side of the inclusive fitness framework (e.g., Eliashberg and Winkler 1981;
Chakraborty and Harbaugh 2007; Maciejewski, Fu, and Hauert 2014).
4. Inclusive Fitness in Evolutionary Game Theory. Inclusive fitness and
neighbor-modulated fitness are commonly viewed as ‘formally equivalent’
in that they yield the same predictions in terms of the direction of evolution-
ary change. That is, they give the same conditions for when a social trait is
favored by evolution (see Birch [2016] and references therein). This section
will show that, in the special case discussed above, we can prove further that
they also give the same prediction for magnitude of evolutionary change.
Section 4.1 will prove that the two calculations of fitness are equivalent when
used with the replicator dynamics, a standard model from evolutionary game
theory. These results are then compared to more common calculations of in-
clusive fitness in the appendix, which proves the equivalence between the rep-
licator dynamics and both the neighbor-modulated and inclusive fitness cal-
culations derived from the Price equation. Then, section 4.2 provides a simple
example to illustrate the connections between these fitness calculations.

4.1. Inclusive Fitness and Neighbor-Modulated Fitness in Evolutionary
Game Theory. In evolutionary game theoretic models, the replicator dy-
namics is a standard model of the evolutionary process. Under this dynamic,
if the fitness of a trait is greater than the average fitness of the population,
the frequency of the trait will increase. The traits of interest dictate behavior
in some social interaction, so a trait’s fitness is determined by how well it
does against the other possible traits in the population (in addition to the
population composition). If xt is the frequency of the trait of interest, and
ft(x) is its fitness in a population of composition x, the replicator dynamics
is governed by the following equation:

_xt 5 xt ft xð Þ 2 �f xð Þ½ �, (6)

where �f (x) is the average fitness in the population. There are a number of
assumptions involved in using the replicator dynamics, notably that the
population size is infinite and there are a finite number of traits.

Since we are trying to see whether the trait of interest is favored, we can
calculate the fitness of organisms that have the trait and the fitness of those
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that do not in order to have a full description of evolutionary change accord-
ing to the replicator dynamics. As mentioned, we will look at the case in
which there are additive fitness effects. If we assume further that there
are pairwise interactions, we can denote organism i’s social partner as
2i. In this case, we can write the neighbor-modulated fitness of the organ-
isms with the trait of interest as

ft xð Þ 5 P T2i Tij Þ sii 1 si2ið Þ 1 P N2ið jTið Þsii
5 sii 1 P T2ijTið Þsi2i,

(7)

where P(T2ijTi) is the probability an organism with the trait will interact
with another organism that has the trait and where P(N2ijTi) is the probabil-
ity an organism with the trait will interact with an organism that does not
have the trait. Similarly, the neighbor-modulated fitness of organisms with-
out the trait of interest is

fn xð Þ 5 P T2ijNið Þsi2i, (8)

where P(T2ijNi) is the probability an organism that does not have the trait
will interact with another organism that does have the trait.

The inclusive fitness of organisms with the trait of interest is (now using
w for inclusive fitness to distinguish it from neighbor-modulated fitness, f )

wt xð Þ 5 sii 1 Rsi2i, (9)

and the inclusive fitness of not having the trait is 0. The relatedness between
interacting organisms, R, is defined as a difference in conditional probabil-
ities (Skyrms 2002; van Veelen 2009; Okasha and Martens 2016). The re-
latedness of a focal organism to its social partner is the probability that the
social partner has a trait given the focal organism does minus the probability
the social partner has the trait given that the focal organism does not:

R 5 P T2i Tij Þ 2 P T2ið jNið Þ: (10)

This is a measure of the degree to which the focal organism’s phenotype
predicts its social partner’s phenotype.9 Since genotypes (to a certain extent)
predict phenotypes, this can also be thought of as a measure of genetic re-
latedness.10
9. Why this is the right definition to use is shown in Skyrms (2002). For a demonstration
that the assortment rate from Grafen (1979) commonly used in the replicator dynamics is
equivalent to a covariance definition of relatedness derived from the Price equation, see
Marshall (2015, chap. 5, n. 1).

10. Note that relatedness is not just the probability that the two organisms share the al-
lele of interest. It is a measure of their genetic similarity relative to the genetic compo-
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If we start with the replicator dynamics with neighbor-modulated fitness
as our measure of fitness, we can show that it is equivalent to using the
replicator dynamics with inclusive fitness as our measure of fitness:

_xt 5 xt ft xð Þ 2 �f xð Þ½ �
5 xt sii 1 P T2i Tij Þsi2i 2 xt sii 1 P T2ið jTið Þsi2ið Þ 2 xn P T2i Nij Þsi2ið Þð �½
5 xt sii 2 xtsii 1 P T2ið jTi½ Þsi2i 2 xtP T2i Tij Þsi2i 2 1 2 xtð ÞP T2ið jNið Þsi2i�
5 xt sii 1 P T2i Tij Þ 2 P T2ið jNið Þð Þsi2i 2 xtsii 2 xt P T2i Tij Þ 2 P T2ið jNið Þð Þsi2i½ �
5 xt sii 1 Rsi2i 2 xt sii 1 Rsi2ið Þ½ �
5 xt wt xð Þ 2 �w xð Þ½ �:

That is, neighbor-modulated fitness and inclusive fitness are equivalent
when used with the replicator dynamics, a standard model of evolution used
in evolutionary game theory.11

The appendix shows further that, given the assumptions stated above, us-
ing the replicator dynamics is equivalent to the Price equation with either
method of calculating fitness. That is, what follows are equivalent descrip-
tions of evolutionary change:

1. The replicator dynamics used with neighbor-modulated fitness
2. The replicator dynamics used with inclusive fitness
3. The Price equation used with neighbor-modulated fitness
4. The Price equation used with inclusive fitness

The equivalence between 1 and 3 is demonstrated in appendix A. The gen-
eral strategy is the same as the one used in Page and Nowak (2002). First,
show that the Price equation used with neighbor-modulated fitness (3) is de-
scriptive of a population evolving according to the replicator dynamics used
with neighbor-modulated fitness (1); then, show that when there are a finite
number of types, 3 is also descriptive of a population evolving according to
1. Using the same strategy, we can show that 2 and 4 are equivalent. This is
done in appendix B. Note that these four ways of modeling evolutionary
change are shown to be equivalent in that they give the same prediction
11. For a discussion of the relationship between inclusive fitness and neighbor-modulated
fitness in games that do not assume pairwise interactions, but with a constant relatedness,
see van Veelen (2011).

sition of the population as a whole. This is important because in studying altruism, for
example, we want to know whether the benefits of altruistic acts fall on altruists suffi-
ciently more often than they fall on nonaltruists. That is, the benefits must fall on altru-
ists rather than nonaltruists with sufficient frequency to give them a reproductive advan-
tage over nonaltruists. We will see an example of how R depends on the population’s
genetic composition in sec. 4.2.
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for both the direction and magnitude of evolutionary change. This goes be-
yond what is commonly meant by the claim that neighbor-modulated fitness
and inclusive fitness are equivalent, which is that they give the same predic-
tion for the direction of evolutionary change (see Birch [2016] and refer-
ences therein).

The next section provides a simple model using inclusive fitness in the
context of evolutionary game theory. This simple illustrative example will
let us see, in more concrete terms, the benefits and disadvantages of using
inclusive fitness in such an idealized setting. Section 5 discusses how to un-
derstand these equivalences in the context of the inclusive fitness debate.
4.2. A Simple Model: Altruism with Haploid Siblings. This section
will provide an idealized model using haploid siblings to show how one
can dynamically model relatedness within the inclusive fitness framework
when selection is not weak. We will assume that these organisms either
have the altruistic trait or not, which is completely determined by whether
they receive a certain gene from their parent. So that the relationship be-
tween this model and Hamilton’s rule is clear, we will assume that when
an organism has the altruistic trait, it pays a cost c and bestows a benefit
b on its social partner. When an organism lacks the altruistic trait, it does
not pay the cost and does not benefit its social partner. In this model, an or-
ganism’s social partner is its sibling. On the basis of these assumptions, we
can calculate the inclusive fitness of altruists to be

fa 5 2c 1 Rb: (11)

The inclusive fitness of nonaltruists is 0 because they do not perform any
action (relevant to our trait of interest) that affects their own or their social
partner’s reproduction. Thus, altruism will spread when bR 2 c > 0.

Since the relatedness of haploid siblings is determined by the genetic
material they receive from their common parent, we can let p be the fre-
quency of altruists in the parent generation and use this to calculate related-
ness among the offspring. We will also account for a small mutation rate m
in the calculation of relatedness. Once we rewrite the probabilities (accord-
ing to the definition of conditional probability) so that they are easier to cal-
culate from the assumptions of the model, we can calculate the relatedness
of an altruist to its haploid sibling in the following way:

R 5 P A2i Aij Þ 2 P A2ið jNið Þ

5
P A2i & Aið Þ

P Aið Þ 2
P A2i & Nið Þ

P Nið Þ

5
p 1 2 mð Þ21 1 2 pð Þm2

p 1 2 mð Þ 1 1 2 pð Þm 2
p 1 2 mð Þm 1 1 2 pð Þ 1 2 mð Þm

pm 1 1 2 pð Þ 1 2 mð Þ :
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Briefly, here is how to understand this calculation. The numerator of the first
term is the probability of two haploid siblings both being altruists. Since
there are two ways to get two altruistic offspring, we can calculate this as
the probability the parent is an altruist (p) times the probability it has two
offspring without mutations ((1 2 m)2) plus the probability the parent is a
nonaltruist (1 2 p) times the probability it has two offspring that both have
a mutation (m2). The denominator of the first term is then the frequency of
altruists in the offspring generation. These offspring can come from an al-
truist parent without mutation or from a nonaltruist parent with mutation.
The second term is calculated similarly. The numerator is the probability
that a focal nonaltruist will have an altruist sibling: the probability that
the parent is an altruist and the focal organism mutates while its sibling does
not plus the probability the parent is a nonaltruist and the focal organism
does not mutate while its sibling does. This is divided by the frequency
of nonaltruists in the offspring generation.

Figure 1 shows how R will change when the population’s composition
changes.12 In particular, it shows that relatedness decreases as the popula-
tion becomes more uniform.13 To see why this is the case, it is easiest to look
at the extremes of p 5 0 and p 5 1. When p 5 0, the parent population is
entirely composed of nonaltruists. In the offspring generation, altruists only
exist because of mutation. The probability an altruist has an altruist sibling
is just m, the probability that the sibling also has a mutation. However, the
probability that a nonaltruist has an altruist sibling is also m, the probability
that the sibling has a mutation. So R 5 P(A2ijAi) 2 P(A2ijNi) 5 0. Similar
reasoning applies when p 5 1. The parent population is composed entirely
Figure 1. Relatedness graphed over the frequency of altruists in the parent popula-
tion, for m 5 0:1.
12. This graph was created with a mutation rate of m 5 0:1, which is a fairly high mu-
tation rate. This mutation rate was chosen in order to make the graphs more readable.
Results similar to those described in this section can be obtained with much smaller mu-
tation rates.

13. For a demonstration of this in a more general setting, see Rousset (2002).
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of altruists, so any nonaltruists in the offspring generation arise through
mutation. This means that although altruists are likely to have altruist sib-
lings, nonaltruists are equally likely to have altruist siblings. So although
P(A2ijAi) is high at 1 2 m, P(A2ijNi) is also 1 2 m, and R 5 0.

We can also calculate relatedness in this model using covariances or re-
gressions. Since phenotypes in this idealized model are completely deter-
mined by genotypes (an organism with the altruistic gene is assumed to
be an altruist), we can write

R 5
Cov p, g0ð Þ
Cov p, gð Þ 5

Cov g, g0ð Þ
Cov g, gð Þ 5 bg0g: (12)

For any population composition, we can perform a regression to calculate
the value of R, and it will give the same value of relatedness as the proba-
bilistic definition of relatedness. Figure 2 gives a way to visualize why this
is the case. In this model, an organism’s genetic value, g, is 1 if it has the
gene for altruism and 0 if it does not. Thus, there are four possible places
for data points on a graph of g versus g 0: the four corners of the graph. Then,
when we do a regression of g on g 0, what matters is how many data points
are in each of these locations. When the focal organisms’ genetic value is 1,
its social partner’s genotype will on average be P(A2ijAi). Similarly, when
the focal organisms’ genetic value is 0, its social partner’s genotype will on
average be P(A2ijNi). As shown in figure 2, this is the intercept of the re-
gression, and the regression coefficient is bg0g 5 P(A2ijAi) 2 P(A2ijNi).
Figure 2. Illustration of a 5 P(A2ijNi) and bg0g 5 P(A2ijAi) 2 P(A2ijNi).
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The inclusive fitness of altruists depends on R, so it also changes as the
population composition changes. Figure 3 shows how the inclusive fitness
of altruists compares with the inclusive fitness of nonaltruists over the pos-
sible population compositions, for b 5 18 and c 5 10. Since relatedness
drops off as the population becomes uniform, the inclusive fitness of altru-
ists drops off as the population becomes more uniform. For many possible
values of b, c, and m this means that altruists will have a fitness advantage
for some area around p 5 :5, but their fitness will drop below the fitness of
nonaltruists as the population becomes more uniform.

These calculations of relatedness and inclusive fitness can be used in a
dynamic model where frequencies of genotypes are changing over time;
we use these calculations with an appropriate dynamics to see how the pop-
ulation will evolve and to find the equilibria. For this model, we use the
selection-mutation dynamics, which is just like the replicator dynamics ex-
cept that there is an extra term that keeps track of mutations.14

Figure 4 shows the dynamical analysis of this model, using both inclu-
sive fitness and neighbor-modulated fitness. Figures 4a and 4b show, re-
spectively, how inclusive fitness and neighbor-modulated fitness change
as the population composition changes. Figures 4c and 4d show the evolu-
tionary trajectories in the population, in terms of the change in frequency of
altruists. When this change is positive (when the solid line is above the X-
axis, which is represented by the dashed line in figs. 4c and 4d), altruists
will increase in frequency. Likewise when the change is negative, altruists
will decrease in frequency. Information about the magnitude of selective
Figure 3. Inclusive fitness graphed over the frequency of altruists in the parent pop-
ulation, for m 5 0:1, b 5 18, and c 5 10.
14. With the selection-mutation dynamics, a population with two types will evolve ac-
cording to the following equation: _xt 5 xt½ ft (x) 2 �f (x)� 1 m(1 2 2xt). Note that since
this is the same as the replicator dynamics except for the mutation term, which does
not depend on the definition of ft(x), we can prove that using neighbor-modulated fitness
and inclusive fitness will be equivalent in the same way as in sec. 4.1.
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pressures is also represented; the further the solid line is from zero, the more
selective pressure there is and the faster the population composition will
change.

Comparing figures 4a and 4b shows that the two methods of calculating
fitness do yield different numerical values of fitness. However, in compar-
ing the evolutionary trajectory found using inclusive fitness in figure 4c
with the trajectory calculated using neighbor-modulated fitness in figure
4d, one can see that the choice between these fitness measures makes no
difference for predicting the evolution of the population, either for the quan-
titative predictions of the amount of evolutionary change over time or the
qualitative predictions about the evolutionary outcomes based on the model.
That is, in this simple model, inclusive fitness and neighbor-modulated fit-
ness both give us the same answer when we ask how much altruists will
Figure 4. Comparison of inclusive fitness and neighbor-modulated fitness, for m 5
0:1, b 5 18, and c 5 10. Comparing the calculations of inclusive fitness (a) and
neighbor-modulated fitness (b) shows how the calculations of the two types of fit-
nesses differ. Comparing the change in the frequency of altruists found using inclu-
sive fitness (c) and neighbor-modulated fitness (d) shows that the evolutionary tra-
jectories are the same regardless of which calculation of fitness is used.
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increase or decrease in frequency, across all possible population composi-
tions.

We can also use either type of fitness calculation to find when the change
in altruists is zero, when frequencies are not changing and the population is
at an equilibrium. With the values of m, b, and c chosen here, there are four
equilibria, two of which are stable: one at about 1% altruists and one at
about 75% altruists.15

5. Discussion. We can see from section 4 not only that inclusive fitness is
perfectly well suited for use in evolutionary game theory but also that weak
selection is not a necessary assumption for inclusive fitness calculations and
that these calculations can be part of dynamically sufficient models. Some
methods of calculating or estimating inclusive fitness may require stringent
assumptions, but the calculations in general do not always require extra as-
sumptions. How are we to understand this in the context of the debate over
inclusive fitness?

5.1. Inclusive Fitness with Idealized Models. Some of the disagree-
ment over inclusive fitness can be understood as arising from two sides of
the debate emphasizing different methodologies. Recall from section 3.3
that inclusive fitness is seen as fundamentally within the quantitative genet-
ics tradition, while critics of inclusive fitness tend to favor population genet-
ics or evolutionary game theory. This means that inclusive fitness theorists
tend to favor models that make use of abstractions, leaving details out while
still providing literally true general claims about evolution. By contrast, evo-
lutionary game theory, one of the preferred frameworks of the critics of in-
clusive fitness, tends to provide highly idealized models, making many as-
sumptions that we know are not true of any real population but that allow us
to develop a simple model of a fictional population that we think is similar to
the real world in important ways.

As discussed in section 4.1, when there is an infinite population and a
finite number of types, inclusive fitness calculations from quantitative genet-
ics and evolutionary game theory are equivalent. Since quantitative methods
are designed to handle continuously varying traits, assuming a finite number
of types takes the methods out of the context in which they were developed
and puts them into the context where dynamically sufficient models can be
built. In doing so, we can get models with the kinds of properties valued by
critics of inclusive fitness.
15. An equilibrium is stable when selective pressures will cause the population to return
to the equilibrium if a small amount of drift changes gene frequencies in the population.
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One way to think about this is that the regression methods developed by
inclusive fitness theorists do not, in themselves, provide models with the
properties the critics of inclusive fitness argue evolutionary models should
have. However, we can formulate idealized models that are dynamically
sufficient and that incorporate selection that is not weak. Then, when we
abstract away from the particular details of genetic inheritance or popula-
tion structure assumed by the simplified models, we arrive at the abstract
equations based on the Price equation, which are often used in inclusive fit-
ness theory. Section 4.1 (and the appendix) showed how, when we make sim-
plifying assumptions commonly made in evolutionary game theory, the
replicator dynamics and the versions of the Price equation often used in in-
clusive fitness theory are equivalent descriptions of evolutionary change.

Section 4.2 gives an example of how the regression methods commonly
used in inclusive fitness can be seen as abstract descriptions of models within
evolutionary game theory. In this simple model, we can track how Cov( p, g0)=
Cov( p, g) changes as the population evolves. Using covariances might
seem a bit unnatural in this overly simplified case: because we can calculate
the relatedness directly from the assumptions of the model, we do not need
to estimate it using the methods of quantitative genetics.

In fact, one might wonder whether there is any benefit to be gained from
inclusive fitness in this sort of simplified model. One of the main perceived
benefits of inclusive fitness is that it allows modelers to track changes in
traits rather than the genes encoding for these traits (which are very difficult
to discover empirically) while accounting for genetics by using relatedness
(which is often not too difficult to estimate in real populations; Queller
1992). Because we abstract away from the mechanisms of genetic inheri-
tance and how the genes encode for the trait of interest, summarizing this
with a ‘relatedness’ parameter, we can develop a phenotypic model that still
incorporates genetics in a way that can be empirically easy to measure. That
is, one can account for genetics without knowing or making assumptions
about the actual underlying genetics of a trait. When we switch to an evo-
lutionary game theoretic or a population genetics model, like the replicator
dynamics, we generally then must make assumptions about what these un-
derlying genetics are. We no longer use relatedness to estimate genetic as-
sortment; we can calculate the level of assortment directly.

So, to a certain extent one might think that it is appropriate that the de-
bate over inclusive fitness is a debate over methods: although we can use
inclusive fitness in the highly simplified models of evolutionary game the-
ory, in doing so we lose some of the main benefits of the inclusive fitness
framework. The statistical methods used in inclusive fitness make the frame-
work particularly useful, although these methods may require weak selection
to split fitness effects into additive components and do not provide dynami-
cally sufficient models. Further, if we view the debate as being about the meth-
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ods commonly used in quantitative genetics, we can see where these criti-
cisms come from.16 That is, since inclusive fitness has often been seen as
fundamentally quantitative, and since one of the main benefits of inclusive
fitness (incorporating genetics in a way that is easy to estimate in real pop-
ulations) is generally tied up in the statistical methods arising out of quan-
titative genetics, it makes sense that the debate over inclusive fitness will be
in part a debate over methods. However, the status of inclusive fitness
should not be decided by a debate over the use of methods for which inclu-
sive fitness is seen as particularly beneficial.

The model in section 4.2 demonstrates that there can still be some benefit
to calculating inclusive fitness rather than neighbor-modulated fitness even
in models that are highly idealized, where the level of assortment can be cal-
culated directly. The explanation given for why the population does not
evolve to a population composed entirely of altruists was that relatedness
drops off as the population becomes more uniformly altruistic. This sort of in-
tuitive explanation is not readily available when using neighbor-modulated
fitness. Because the terms describing how the benefits of altruism fall differ-
entially on altruists are split between two different fitness calculations (one for
thefitness of altruists and one for thefitness of nonaltruists), there is no param-
eter that systemically changes as the population composition changes that we
can point to in order to explain why the fitness of altruists drops off as the
population becomes more uniform.17

5.2. The Use of Hamilton’s Rule. Hamilton’s rule, the most famous re-
sult arising out of inclusive fitness theory, has been criticized for not being
generally true, for not having any predictive power, and for being mislead-
ing in the absence of a particular model (Nowak et al. 2010). There is some
truth to these claims. To get Hamilton’s rule in the form bR 2 c > 0, where
c and b are interpreted as costs and benefits as described in section 2.2, one
has to assume additive fitness components as we have been doing through-
out this article. If fitness components are not additive, then the rule will not
give a correct description of a condition for the spread of a trait. Addition-
ally, if we only have enough information to estimate b, c, and R at a partic-
ular point in time, we cannot predict the evolutionary outcome. Further, if
16. This is, of course, not to say that these are the only methods used in inclusive fitness
theory but that the critiques of inclusive fitness are often wrapped up in critiques of the
statistical methods (see, e.g., Allen et al. 2013).

17. Others argue that inclusive fitness is valuable because it allows us to maintain the
analogy of organisms acting as if they are maximizing fitness (Grafen 2007b; West
and Gardner 2013; Okasha, Weymark, and Bossert 2014; Okasha and Martens 2016)
or more modestly that it allows us to explain the selection of social traits because of their
casual contributions to fitness (Birch 2016). These benefits would hold regardless of the
method one uses and so are not addressed here.
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bR 2 c > 0 when we estimate these parameters, we might even be misled
into thinking that the population will eventually be entirely altruistic if we
forget that the value of any of these parameters can change as the population
evolves. However, inclusive fitness theorists will generally agree to this
(see, e.g., Marshall 2015) but maintain that Hamilton’s rule has both predic-
tive and explanatory power. It is not immediately clear where the disagree-
ment lies.18

The distinction between idealizations and abstractions can again be help-
ful in understanding part of the dispute. In particular, why should we expect
Hamilton’s rule to be true in general? Results derived within population ge-
netics and evolutionary game theory are never true in general, as they rely
on idealizations to achieve their simplicity. By contrast, Hamilton’s rule is
seen as a general result that is applicable to any real population one might
wish to study. This fits well with its prominent role in quantitative genetics,
relying on abstractions rather than idealizing assumptions to help provide
“the general principles of social evolution theory” (Marshall 2015, xiv).

In this vein, there is emphasis on providing a version of Hamilton’s rule
that is generally true. Hamilton’s rule can be given in a very general form in
which we do not have to assume any particular population structure or ad-
ditive payoff affects (Gardner, West, and Wild 2011). Birch (2014b) and
Birch and Okasha (2015) describe this in detail, but we can think of the
‘cost’ and ‘benefit’ terms in the rule as statistical associations between an
organism’s fitness and its own genotype (a self-effect) and its social partner’s
genotype (an other effect), respectively. This general version of Hamilton’s
rule is true of any population. “In effect, this is because we are abstracting
away from the complex causal details of social interaction to focus on the
overarching statistical relationship between genotype and fitness” (Birch
and Okasha 2015, 24).

The question is then whether this version of Hamilton’s rule has any pre-
dictive power. It can have predictive power if its components can be under-
stood causally instead of just statistically. That is, if the self-effect and other-
effect terms can be interpreted as ways in which the focal organism causally
contributes to its own and its social partner’s fitness, we have a model that
can be used to make predictions rather than just a statistical summary of evo-
lution within a population. However, as Birch and Okasha (2015) explain, it
is not entirely clear when a causal interpretation can be provided.

There are, however, a variety of different rules that go under the name
‘Hamilton’s rule’, each of which follows from different assumptions about
the evolutionary process. We can describe these versions of Hamilton’s rule
as falling into three categories. There are ‘special’ versions of the rule (where
18. See Marshall (2015, chap. 6, n. 9) for an example of an inclusive fitness model
where parameters can change as the population evolves.
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the b and c terms are interpreted as payoffs in a model) and ‘approximate’
versions (which provide marginal approximations of the general versions
of the rule) in addition to the ‘general’ version described above (Birch and
Okasha 2015).

In the version of Hamilton’s rule in section 3.1, the b and c terms are in-
terpreted as payoff from a game, or parameters in the model, so this can be
thought of as a special version of Hamilton’s rule. The fact that we derived a
condition bR 2 c > 0 for the spread of altruism depends on the particular
payoff structure of the model. If there were nonadditive payoffs, we would
have derived a different condition for the spread of altruism. Section 4 (and
the appendix) illustrated how these general versions of Hamilton’s rule de-
scribe the special versions from particular models. As mentioned in sections
3.1 and 3.3, there are also approximate versions of Hamilton’s rule that re-
quire the assumption of weak selection to calculate relatedness or in order to
split fitness effects into additive components. Thus, these rules abstract
away from the particular payoff structure and so describe a wider range
of cases than special forms of the rule. The assumption of weak selection,
then, provides some restriction on the conditions under which approximate
versions of Hamilton’s rule will apply but allows us to give an approximately
correct condition for the spread of a social behavior for arbitrary payoff struc-
tures. (See Birch and Okasha [2015] for more discussion.)

Note that both general and approximate versions of Hamilton’s rule ap-
ply for arbitrary payoff structures, but neither is dynamically sufficient.
They instead allow us to perform a static analysis, comparing fitnesses at
specific points in the evolutionary process (usually the points of interest
are equilibria). Since this article has looked at how inclusive fitness is used
in the replicator dynamics compared with approaches based on the Price
equation, it has focused on the contrast between abstract models in quanti-
tative genetics and idealized models in evolutionary game theory. However,
that the critics of inclusive fitness prefer dynamic models over these static
modeling techniques is perhaps the more fundamental disagreement in the
debate.

There is the additional issue of interpreting the R parameter in Hamil-
ton’s rule. Although many inclusive fitness theorists recognize that R in in-
clusive fitness calculations can be thought of as a general measure of cor-
relation, Hamilton’s rule is still usually presented as a condition for the
evolution of a trait by kin selection. However, this is an additional oppor-
tunity for Hamilton’s rule to be misleading; a suggested biological or causal
interpretation of the parameter might be unwarranted. Some criticisms seem
to assume that Hamilton’s rule is only useful when R is a measure of kinship
(Nowak et al. 2010). The thought behind these sort of critiques of Hamil-
ton’s rule seems to be that when R does not have an intuitive biological in-
terpretation, it is not clear what explanatory power is gained from forcing
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terms into this particular inequality. The power of Hamilton’s rule then
comes from using something like the statistical definitions of relatedness
provided here and estimating relatedness using measures of kinship, like
pedigrees.19

Since the statistical definitions of relatedness are historically explained
and used as measures of kinship, adopting Hamilton’s rule as a starting point
might seem to suggest an interpretation in terms of kin selection and may lead
to theorists ignoring other mechanisms that generate assortment between
types. Connecting the statistical and probabilistic definitions here is one
way of emphasizing how the association between ‘relatedness’ and R is con-
tingent: R just measures differences in conditional probabilities of interacting
with certain types in the population. In this context, Hamilton’s rule might be
thought of as a convenient mathematical description of the fact that there
must be sufficient assortment between types in order for a trait such as altru-
ism to evolve, a general point that has been made without the use of Ham-
ilton’s rule (see, e.g., Skyrms 1996). A fully specified (but idealized) model,
like the one in section 4.2, can connect R in Hamilton’s rule to kinship, giving
it a meaningful biological interpretation.

This is in line with one suggestion to avoid wrongly interpreting results
in terms of kin selection, advanced by Taylor and Frank (1996) and Frank
(2013), among others: formulate and analyze a model first, then afterward
use Hamilton’s rule to give an intuitive explanation of the results if appro-
priate. This allows us to set up the model with whatever mechanism of as-
sortment we think is plausible, then use Hamilton’s rule if it helps illumi-
nate important aspects of the causal structure.

6. Conclusion. While there can be benefits to using inclusive fitness, this
does not mean that it is always beneficial to do so. Whether inclusive fitness
or Hamilton’s rule should be used depends on the model or the population
one is studying. Many of the issues involved in deciding whether to use these
methods were not addressed here. This article has discussed the use of inclu-
sive fitness in a special type of evolutionary model, in which pairwise interac-
tions, additive fitness effects, and a finite number of types were assumed. In
doing so, this article focused the discussion on issues surrounding the differ-
ent methodologies favored by the critics and proponents of inclusive fitness
theory, in absence of conceptual and mathematical complexities that can
arise in more complicated scenarios. Looking at this simple case helped to
illuminate several features of the mathematical framework of inclusive fit-
ness and the debate surrounding it.
19. There are of course, other issues with applications of Hamilton’s rule aside from in-
terpreting R in terms of kinship. Often in more biologically realistic models, in order to
keep R defined in a way that is plausibly connected to relatedness, b and c become func-
tions of R itself. These sorts of issues are dealt with by Frank (2013) and Birch and
Okasha (2015), among others.
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While there may be difficulties with partitioning fitness effects into the
form demanded by inclusive fitness when interactions become more com-
plicated, we have seen that the specific causal partition used in inclusive fit-
ness does not prevent one from building dynamically sufficient models, nor
does it require weak selection. Criticisms of inclusive fitness claiming that it
requires these stringent assumptions are best thought of as criticisms of the
types of quantitative methods generally used by inclusive fitness theorists.
One can use inclusive fitness calculations in the sort of population genetic
or evolutionary game theoretic models favored by these critics. In these
models much of the advantage of using inclusive fitness, such as providing
terms that can be easy to estimate empirically, disappears, but its power as
an intuitive explanation of the evolution of social traits remains.
Appendix A

Equivalence with Neighbor-Modulated Fitness

The Price Equation Describes the Replicator Dynamics. Following the
definition provided in section 2.1, we can calculate the neighbor-modulated
fitness of a pairwise interaction as follows:

fi 5 sii 1 s2ii: (A1)

Keeping track of probabilities of receiving payoffs was necessary in section
4.1 in order to show the connection between neighbor-modulated fitness
and inclusive fitness, but since we are only dealing with neighbor-modulated
fitness we can use this less complicated expression. In these calculations, we
will track the change in g, genetic value.

By definition, _E(g) 5 oigi _xi 1 oi _gixi. As mentioned, for simplicity we
assume that there is no transmission bias and set oi _gixi 5 0. Then, since
the replicator dynamics provides us an equation for _xi, we can plug the
replicator dynamics into the Price equation:
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(A2)
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This is the Price equation with fitness partitioned into two components, the
effect the focal organism has on its own fitness and the effect the social part-
ner has on the focal organism’s fitness. Theorists often derive this from the
original Price equation in order to use neighbor-modulated fitness calcula-
tions and introduce relatedness calculations (see, e.g., Queller 1992).

Hamilton’s rule can easily be derived from this equation. Since the way
an organism affects the fitness of itself and others is (to a certain degree)
predicted by its phenotype, we can write both fitness terms as the following
regressions:

sii 5 asiip 1 bsiip p 1 εsiip; (A3)

s2ii 5 as2iip
0 1 bs2iip

0 p0 1 εs2iip
0 : (A4)

Since the a’s are the intercepts of the regression, they are constants and can-
not covary with g. The ε’s are error terms, which do not covary with g when
payoffs are additive (Queller 1992). So, plugging (A3) and (A4) into the
last line of (A2), we are left with

_E gð Þ 5 bsiipCov p, gð Þ 1 bs2iip
0Cov p0, gð Þ: (A5)

When we can interpret bsiip as a cost c and bs2iip
0 as a benefit b, this gives us

_E(g) > 0 when b � Cov p0, gð Þ
Cov p, gð Þ 2 c > 0, (A6)

where Cov( p0, g)=Cov( p, g) is the neighbor-modulated fitness version of
relatedness.
The Replicator Dynamics Describes the Price Equation.When there are
a finite number of types, gi can be written as an indicator function:

g<i>
j 5

1 if   i 5 j

0 otherwise
:

(

For Page and Nowak (2002), who were considering phenotypes rather than
genotypes, assuming a finite number of types was a restriction. Here, in
considering genotypes, it is a natural assumption to make.

We can then use this indicator function in the Price equation with two
fitness components derived above and simplify:
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_E gð Þ 5 Cov sii, g
<i>ð Þ 1 Cov s2ii, g

<i>ð Þ
5 E siig

<i>ð Þ 2 E siið ÞE g<i>ð Þ 1 E s2iig
<i>ð Þ 2 E s2iið ÞE g<i>ð Þ

5 o
j

g<i>
j xjsii 2o

j

g<i>
j xj

1

noj sjj 1o
j

g<i>
j xjs2ii 2o

j

g<i>
j xj

1

noj s2jj

5 xisii 2 xi
1

noj sjj 1 xis2ii 2 xi
1

noj s2jj

5 xi fi xð Þ 2 �f½ �:

(A7)

Since g<i>
j 5 1 when i 5 j and 0 otherwise, ojg<i>

j xj 5 xi, and this simpli-
fies to yield the replicator dynamics.
Appendix B

Equivalence with Inclusive Fitness

The Price Equation Describes the Replicator Dynamics. This is done in
the same way as appendix A, except we take into account that the genetic
value of the focal organism times its relatedness to its social partner is a
measure of the social partner’s genetic value:

_E gð Þ 5 o
i

gi xi sii 2
1

noj sjj
 !

1 xiri2i si2i 2
1

noj sj2j

 !" #

5 o
i

gixisii 2o
i

gixi
1

noj sjj 1o
i

giri2ixisi2i 2o
i

giri2ixi
1

noj sj2j

5 Cov sii, gð Þ 1 Cov si2i, g
0ð Þ:

(B1)

This is again a version of the Price equation where the fitness effect is split
into two components. Here, though, fitness is split into the effect the focal
organism has on its own fitness and the effect the focal organism has on its
social partner’s fitness.

In order to relate this to Hamilton’s rule, we can again notice that the fit-
ness components are predicted by phenotype. Since in this case the focal
organism causes the fitness effects, both for itself and its social partner,
the phenotype of the focal organism predicts both fitness effects. So, we
use the phenotype of the focal organism in both regressions:
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sii 5 asiip 1 bsiip p 1 εsiip; (B2)

s2ii 5 asi2ip 1 bsi2ip p 1 εsi2ip: (B3)

We can then plug (B2) and (B3) into the last line of (B1) and rearrange to
obtain the inclusive fitness version of Hamilton’s rule:

_E(g) > 0 when b � Cov p, g0ð Þ
Cov p, gð Þ 2 c > 0: (B4)

The Replicator Dynamics Describes the Price Equation. We can again
let gi be an indicator function and write

_E gð Þ 5 Cov sii, g
<i>ð Þ 1 Cov s2ii, g

0
< i >ð Þ

5 o
j

g<i>
j xjsii 2o

j

g<i>
j xj

1

noj sjj 1o
j

g<i>
j rj2jxjsi2i 2o

j

g<i>
j rj2jxj

1

noj sj2j

5 xisii 2 xi
1

noj sjj 1 xiri2isi2i 2 xiri2i

1

noj sj2j

5 xi fi xð Þ 2 �f½ �:

(B5)

Again, this simplifies to yield the replicator dynamics.
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