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Abstract The ‘phenotypic gambit,’ the assumption that we can ignore genetics and

look at the fitness of phenotypes to determine the expected evolutionary dynamics

of a population, is often used in evolutionary game theory. However, as this paper

will show, an overlooked genotype to phenotype map can qualitatively affect

evolution in ways the phenotypic approach cannot predict or explain. This gives us

reason to believe that, even in the long-term, correspondences between phenotypic

predictions and dynamical outcomes are not robust for all plausible assumptions

regarding the underlying genetics of traits. This paper shows important ways in

which the phenotypic gambit can fail and how to proceed with evolutionary game

theoretic modeling when it does.

Keywords Evolutionary game theory � Philosophy of biology � Methodology �
Evolutionary models

Uncertainty about the underlying genetics of a trait is often used in evolutionary

game theory as a justification for the ‘phenotypic gambit’—the assumption that we

can ignore genetics and look at the fitness of phenotypes, the observable traits of

organisms determined by some mixture of genetics and environment, to determine

the expected evolutionary dynamics of a population. In phenotypic models, it is

assumed that reproduction is asexual and that offspring are clones of their parent.

Genetic models on the other hand take into account that in sexually reproducing

organisms, offspring get their genetic material from both parents. Offspring may

have a different genetic make-up from either of their parents and thus a different

phenotype as well. The genes encoding for different traits become the focus of
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analysis rather than only the traits themselves. While the phenotypic approach both

simplifies the mathematics and often generates accurate predictions of real world

systems, it can also yield false predictions (Marrow et al. 1996; van Oers and Sinn

2011).

The emphasis on phenotypes rather than genotypes is so prevalent in

evolutionary game theory that it is generally considered a phenotypic approach to

evolutionary modeling (Hammerstein and Selten 1994, 935). However, there is no

reason why evolutionary game theoretic models cannot be genetic in character. This

paper will give concrete examples of genetic models in evolutionary game theory

and demonstrate why the use of genetic models is important. In particular, it will

show that varying which phenotype is associated with a particular genotype in

genetic models can drastically affect the dynamics in a way that the phenotypic

approach cannot predict or explain.

The organisms in the genetic models considered here are diploid; they have two sets

of chromosomes. This means they can have two copies of a gene at a locus, or a place on

a chromosome where a particular gene is found. Organisms may be homozygous, have

two copies of the same allele (version of a gene), or heterozygous, have two different

alleles, with respect to some locus. This paper will use evolutionary game theory to show

that what assumptions are made about the heterozygote’s phenotype can change both the

type of selective pressure acting on the population and the expected outcome of

evolution. As we will see, this is in contrast to the relatively unimportant role often

played by heterozygotes when genetics are incorporated into evolutionary game

theoretic models (‘‘Preliminaries: genotype to phenotype maps and evolutionary

stable strategies, Selective Pressures and Stability and ESS Methodology’’ sections).

This paper will analyze several models of well-known games—namely the Nash

Demand game, Hawk–Dove, and the Prisoner’s Dilemma—to show how genetics can

affect the evolutionary process. This will show some ways in which the phenotypic

gambit can fail to predict evolutionary outcomes. This is important because the

phenotypic gambit plays an important role in evolutionary modeling, especially in what

are called ‘adoptionist programs’ or optimization approaches to evolutionary theory.

These approaches are built on the expectation of fitness-maximization, or the

expectation that evolution will lead to some optimal set of phenotypes. Genetic

constraints which would prevent the population from reaching this optimal point are ‘‘a

fly in [the] ointment’’ for the phenotypic gambit and optimization approaches (Grafen

2014, 157). While we know the assumptions of phenotypic gambit are false, we could be

comfortable relying on it if we knew that it gave us close to the right answer in most cases

and if we could categorize the exceptional cases in which predictions based on the

phenotypic gambit would not be approximately true (Grafen 2014).

Part of the analysis presented here will demonstrate how the well-known

phenomenon of heterozygote advantage, where the heterozygote is more fit than

either homozygote, can transfer over from the non-social to the social context, where

evolutionary game theory is used. Heterozygote advantage has been commonly used

as a counter-example to adoptionist programs (see, for example Grafen 2014). If the

heterozygote is most fit, then genetic constraints prevent the population from evolving

to become composed entirely of the most fit organisms, as will be further explained (in

the ‘‘ESS methodology’’ section). This paper will show that in the social context there
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is an additional complication for adaptionist programs: the phenotype of the

heterozygote can affect evolutionary outcomes even when its fitness is between

the fitness of the two homozygotes.1 Why this is important will be explained further

(in the ‘‘Selective pressures and stability and ESS methodology’’ sections).

This demonstrates how the phenotype assigned to the heterozygote can

importantly affect evolutionary processes and outcomes. However, it is often

argued that in the long-term, the effects of these genetic constraints can be ignored

and we can predict the evolutionary outcome based on phenotypic stability criteria,

such as an evolutionary stable strategy (ESS) (see Marrow et al. 1996 and references

therein). However, as we will see, connections between ESS methodology and long-

term evolutionary outcomes rely on strong assumptions that may not be reasonable

for every evolutionary process. So while the phenotypic gambit may pay off in

many cases, we should be aware of its limitations and we should know how to

proceed with evolutionary game theoretic modeling when the gambit fails.

The paper will proceed as follows. First, I will introduce genotype to phenotype

maps and their use in evolutionary game theory. I will also review some relevant

topics from game theory in a population setting and explain the concept of an ESS

(‘‘Preliminaries: genotype to phenotype maps and evolutionary stable strategies’’

section). Then, I will discuss dynamics commonly used in evolutionary game theory

for phenotypic and genetic models (‘‘Dynamics for phenotypic and genetic models’’

section). With all this is place, I will consider models of a number of well-known

games where differing assumptions about the heterozygote phenotype make

significant differences for evolutionary outcomes (‘‘Models’’ section). Next, I will

discuss some lessons about selective pressures and ESS methodology that can be

drawn from this analysis (‘‘Selective pressures and stability and ESS methodology’’

sections, respectively). Finally, I will discuss some ways to think about phenotypic

modeling in evolutionary game theory (‘‘Concluding remarks’’ section).

Preliminaries: genotype to phenotype maps and evolutionary
stable strategies

Evolutionary change depends on the fitness of organisms, which in turn depend on

the organisms’ phenotypes. Thus changes in gene frequencies are crucially affected

by what sort of genotype to phenotype mapping is assumed. A genotype to phenotype

map simply describes what sort of phenotype is encoded for by each possible

genotype, and so is responsible for connecting the genetic level with the phenotypic

level. This mapping can be one-to-one, where each genotype encodes for a unique

phenotype, or many-to-one, where multiple genotypes can encode for the same

phenotype.2 In the context of evolutionary game theory, the strategies of a game are

1 In contrast, when selection is not frequency dependent, selection will eventually lead to a population

composed of the most fit homozygote (although the heterozygote phenotype may affect the speed of this

evolutionary process).
2 In real life situations these maps are often one-to-many or many-to-many because environmental

factors affect phenotypes as well as genetic factors. However, environmental factors are often ignored in

models for simplicity, so it is assumed that the maps are one-to-one or many-to-one.
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considered to be phenotypes of the organisms, so the genotype to phenotype map in

this context determines what strategy an organism of a given genotype will play. Just

as in the classic examples of heterozygotism, heterozygotes game theoretic models

can play a strategy that is distinct from the strategies associated with homozygotes.3

When making the phenotypic gambit, one assumes a very simple genotype to

phenotype map. That is, one assumes there is simply a gene which maps one-to-one

onto a strategy. Often, genetic models also assume a fairly simple genotype to

phenotype map: they assume that the heterozygote strategy is a convex combination

of strategies played by the homozygotes (Maynard Smith 1982; Binmore and

Samuelson 2011).4 A convex combination in this context is a linear combination of

strategies where the coefficients are positive and sum to one. So for instance, if there

are two strategies, s1 and s2, a convex combination of the two would be as1 ? bs2

where a ? b = 1. This means that the heterozygote could play the same strategy as

one of the homozygotes (if a or b is zero), interpreted as one allele being dominant

over the other. In this paper, I will provide examples where a and b aren’t zero,

meaning the heterozygote plays a mixed strategy.5

Genotype to phenotype maps, however, are not always straightforward, especially

when it comes to behavioral traits.6 Besides mathematical convenience, there is no

reason to assume that an intermediate heterozygote phenotype must be a convex

combination of the homozygote strategies in the particular way commonly assumed by

these biological models, or a convex combination of homozygote strategies at all.

Examples of different assumptions will be discussed (in the ‘‘Models’’ section).

This paper uses evolutionary game theory to analyze the effects of the genotype

to phenotype map. An evolutionary game theoretic analysis begins with a game that

can be used as a model of some strategic interaction an organism might participate

in. The payoffs of these interactions are then taken to affect the organism’s fitness,

so that a strategy which receives higher payoffs in the game can be generally

expected to increase in frequency. In using evolutionary game theoretic analysis it is

useful to relate the dynamical outcomes to equilibrium concepts in game theory, so I

will introduce some of these concepts now.

Game theoretic equilibrium concepts are traditionally phrased in terms of a

rational agent, but we can also apply these concepts in a biological setting where an

organism’s phenotype is the strategy it plays in a game. It will be useful to explain

at the start how we can apply these concepts in the population setting without any

assumptions about the rationality of organisms. To do this, we look at the strategy a

3 One classic example of heterozygotes exhibiting traits that differ from either homozygote is in

primroses where homozygotes have either red or white flowers while the heterozygote’s flowers are pink.
4 Hines and Bishop (1984a) explore cases where the heterozygote strategy is not a convex combination of

mixed strategies, but their model is different from the ones presented here in that both the homozygotes

and the heterozygotes employ mixed strategies, and mix from the same set of possible pure strategies.

This is discussed in further detail in the ‘‘ESS methodology’’ section.
5 I assume for simplicity that homozygotes play pure strategies, but they could also play mixed strategies

and similar analysis would apply.
6 Genotype to phenotype maps have been investigated with a variety of different aims. Within

evolutionary game theory, for instance, Binmore and Samuelson (2011) evaluate the effect of second

order forces (e.g. drift or mutation) in models with different underlying genetics.
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population as a whole is playing, or the effective strategy of the population, by

taking the weighted average of all the strategies played in the population (Cressman

1992, 61–2). In a population setting, a Nash equilibrium corresponds to an effective

strategy of the population that is a best response to itself—no other effective

strategy could do better if played against it. This could be a pure Nash equilibrium,

where every organism plays the same pure strategy, or a mixed Nash equilibrium,

where more than one strategy is played within the population.

A pure Nash equilibrium hashed out as a population state corresponds to a

phenotypic monomorphism—a state where every organism in the population has the

same strategy (phenotype). A mixed Nash equilibrium could either correspond to a

phenotypic monomorphism, where every organism mixes over a number of pure

strategies with the same probability, or a phenotypic polymorphism in which there

are multiple strategies (phenotypes) present. A phenotypic polymorphism could

then have organisms playing strategies with different probabilities with the effective

strategy of the population corresponding to a mixed Nash equilibrium. How the

individual strategies of organisms combine to determine the effective strategy of a

population can have important effects on selective pressures and evolutionary

outcomes (Bergstrom and Godfrey-Smith 1998), but for the purposes here these

distinctions will not be important.

One of the most commonly used concepts of evolutionary stability in evolutionary

game theory, an evolutionary stable strategy (ESS), is a refinement of the Nash

equilibrium concept:

A strategy s* is an ESS if and only if

1. u(s*, s*) C u(s, s*) for any s in the strategy set, and

2. if u(s*, s*) = u(s, s*), then u(s*, s)[ u(s, s).

where u(x, y) is the utility (or fitness benefit) an organism using strategy x gets from

an interaction with an organism using strategy y. That is, (1) a strategy s* is a best

response to itself—it is a Nash equilibrium—and (2) if another strategy s is also a

best response to s*, then s* does better against s than s does against itself. This is a

way of making precise the idea that an ESS is an ‘uninvadable’ strategy, that when a

population is at an ESS other strategies cannot arise through mutation and invade

the population. For population games, it is helpful to view s and s* as possible

effective strategies of the population (Eshel 1996).

Dynamics for phenotypic and genetic models

In phenotypic evolutionary game theoretic models, the replicator dynamics are often

used to model the evolutionary process. Under these dynamics, if the fitness of a

strategy is greater than the average fitness of the population, the frequency of that

strategy will increase. A strategy’s fitness is determined by its payoffs against other

strategies in addition to the population composition, which determines how likely it

is for organisms using that strategy to receive each of their payoffs. Let us call the

allele in question A1, its frequency p, and its fitness wp. The frequency of the other
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allele, A2, is q where q ¼ 1 � p and its fitness is denoted by wq. The replicator

dynamic is then governed by the following equation:

_p ¼ p wp � pwp þ qwq

� �� �

where pwp þ qwq

� �
is the average fitness of the population.7 Although I have

described this in terms of frequencies of alleles, phenotypes are determined by a

single allele so tracking changes in allele frequencies is equivalent to tracking

changes in phenotype frequencies.

For genetic models of randomly mating, infinite populations, the Hardy–Weinberg

dynamics is oftentimes employed. This is similar to the replicator dynamics but

incorporates features of sexual reproduction. In this dynamic, offspring get their

genetic material from two parents, one allele from each (unlike in the replicator

dynamics where offspring are assumed to be clones of their parent). Selective pressure

depends on the fitness of a strategy, but ultimately the fitness of each allele determines

the evolution of a population. This is because the fitness of an organism is determined

by its phenotype, but the frequency of alleles passed on through random mating will

determine the phenotypes present in the next generation. The evolutionary trajectory

is governed by the following equation:

pnext ¼
w11p

2 þ w12pq

w11p2 þ w122pqþ w22q2

where wxy represents the fitness of the AxAy genotype. The numerator of this equation

is the fitness of the A1 allele8 and the denominator is the average fitness of the pop-

ulation.9 Since alleles recombine according to the laws of probability, p2 is the fre-

quency of individuals homozygous with respect to A1 (denoted A1A1), q2 is the

frequency of A2A2- homozygotes and 2pq is the frequency of heterozygotes (A1A2).

In order to discuss the dynamical outcomes in the next section, it is important to

first explain what I mean by the term ‘stable equilibrium’. First, a steady state is

configuration of genotypes within a population where allele frequencies do not

change over time in the absence of any drift or mutation. A stable equilibrium is

then a steady state with the additional property of being locally asymptotically

stable: when there is a small amount of mutation or drift that changes the gene

frequencies, selective pressure will cause the population to return to the steady state.

The ESS concept is useful because it has been proven to match up with many

common dynamics, such as the replicator dynamics and the Hardy–Weinberg

dynamics, in such a way that if an effective strategy is an ESS of the game, then

under certain assumptions it is also a stable equilibrium of the dynamic (Hofbauer

and Sigmund 1998). The connection between the replicator dynamics and the ESS

7 This assumes there are only two alleles in the population, but of course the dynamics can be extended to

account for more than two alleles. The same is true of the Hardy–Weinberg dynamics.
8 This is calculated from the fitness of the A1A1 homozygote times its frequency, plus the fitness of the

heterozygote times pq. The frequency of these heterozygotes is 2pq, but since they only pass on the A1

allele half of the time, in calculating the fitness of A1, the heterozygote fitness is multiplied by half their

frequency.
9 This is just the weighted average of the fitness of each genotype.
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concept can be fairly straightforward: a strategy is a stable equilibrium of the

replicator dynamics if it is an ESS of the game (Hammerstein and Selten 1994).

However, even in phenotypic models, there are still many cases where an ESS of a

game will fail to coincide with any steady states of the dynamics (Huttegger and

Zollman 2013). The connection between the ESS concept and stable equilibria in

models which incorporate genetics is even less straightforward. The usefulness of

ESS methodology for predicting outcomes in these models will be discussed (in the

‘‘ESS methodology’’ section).

In what follows I will look at the effects of the heterozygote strategy on the

applicability of the standard phenotypic dynamics and ESS methodology in genetic

models. This is, of course, only one particular de-idealization. The models here still

make many assumptions in order to simplify analysis. In particular, it is assumed

that the population is infinite and that interactions between organisms are random.

Removing either of these assumptions can also affect evolutionary dynamics and the

usefulness of ESS methodology (see, for example, Young and Foster 1991; Nowak

et al. 2010; Fogel and Fogel 2011).

Models

In this section, I will present three examples using well-known games to illustrate

the effects of different phenotype to genotype maps. Each example will begin with a

description of a game. This will be followed by the analysis of a version of the game

with two strategies using both replicator dynamics and a genetic model where the

heterozygote plays a mixed strategy (this sort of genetic model will be referred to as

the ‘mixed strategy case’). I will then provide an analysis of a version of the game

with three strategies using replicator dynamics, followed by a genetic model in

which the heterozygote plays one of the three pure strategies (the ‘pure strategy

case’). In these models, the allele associated with the first strategy listed in the

payoff table will be called A1 and its frequency p. For ease of comparison, in the

examples considered here I restrict attention to cases of intermediate inheritance,

where the heterozygote phenotype is ‘between’ the homozygote phenotypes.

Example 1: Nash demand

The Nash Demand game represents a situation in which two actors try to divide a

resource by demanding a certain fraction of the contested resource. If the two

demands together are less than or equal to the total amount of the resource, each

gets the share they demanded. If the demands add up to more than the whole, neither

gets anything. Similar to Skyrms (1996), I assume that there is one allele for

demanding 1/3 of the resource and another for demanding 2/3. We can get the

fitness of each phenotype from the payoffs in the first and third rows of Table 1

(along with the population distribution).

Under the replicator dynamic, there is a stable polymorphic equilibrium at

p = 0.5, where half the population is demanding 1/3 and the other half is

demanding 2/3. In the genetic model with these same strategies, one homozygote
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(A1A1) demands 1/3 and the other (A2A2) demands 2/3. The heterozygote (A1A2)

will be modeled as mixing between these two demands with equal probability. How

the heterozygote mixes between the two demands is arbitrary and does not

qualitatively affect the dynamic in the sense that it does not alter the effective

strategy, the weighted average of the strategies played in the population, at

equilibrium. Why this is true of the mixed strategy case will be explained in the next

section. There is again a stable polymorphic equilibrium at p = 0.5, where 25 % of

the population demands 1/3, 50 % demands 1/3 half the time and 2/3 half of the

time, and 25 % demands 2/3. So, half of the demands made in the population are for

1/3 and the other half are for 2/3; the effective strategy of the population is the Nash

Equilibrium.

If the homozygotes demand 1/3 and 2/3 of a resource, the heterozygote could play

the commonly assumed convex combination of these and mix between demanding

these amounts. However, heterozygotes may also demand some portion of the

resource between 1/3 and 2/3, say 1/2, which can also be viewed as convex

combination of homozygote strategies since the amount demanded is a convex

combination of the amounts demanded by each homozygote. These are both possible

intermediate strategies and both might be of interest from a modeling standpoint.

Under the replicator dynamic with these three strategies, there are two stable equi-

libria: one in which the entire population demands 1/2 and another in which half the

population demands 1/3 while the other half demands 2/3 (Skyrms 1996). These

effective strategies are both Nash equilibria of the game. On the other hand, in a

genetic model with the heterozygote demanding 1/2, the population always evolves to

a stable polymorphic equilibrium at p & 0.63. This means that roughly 36.7 %

demand 1/3, 46.7 % demand 1/2, and 13.7 % demand 2/3.10 The reasons for

ending up at this alternative equilibrium this will be discussed in the next two sections.

For now, we can note that the polymorphism in the mixed strategy case, where the

population demands are split evenly between demanding 1/3 and demanding 2/3, is

not possible in the pure strategy case because, even if the population were to start at

this effective strategy, mating would lead to the production of heterozygotes

demanding 1/2 in the next generation.

Example 2: Hawk–Dove

Maynard Smith and Price (1973) introduced the Hawk–Dove game as a description

of certain animal conflicts. ‘Hawk’ refers to an aggressive animal that fights for a

Table 1 Nash Demand game
Demand 1/3 Demand 1/2 Demand 2/3

Demand 1/3 1/3 1/3 1/3

Demand 1/2 1/2 1/2 0

Demand 2/3 2/3 0 0

10 This case has also been considered by Tennant (1999), but the sorts of dynamic and stability concerns

addressed here were not at issue.
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resource and ‘dove’ refers to an animal that is unwilling to fight. A hawk then

always gets the contested resource when encountering a dove, but will split the

resource and cost of entering into a conflict (injuries incurred, expended energy,

etc.) with another hawk. A dove will always surrender the resource to a hawk, but

will split the resource peacefully with another dove. As in Maynard Smith (1982),

when the value of the resource is 2 and the cost of conflict is 4, the payoffs are as in

Table 2.

Under the replicator dynamics, there is one stable equilibrium at p = 0.5 where

each allele is found in equal frequency and each strategy is played by half of the

population. In the mixed strategy case, there is again one stable equilibrium at

p = 0.5, but this corresponds to a population where 25 % of the population always

plays dove, 25 % always plays hawk and 50 % mixes between the two strategies

with equal probability. The effective strategy of the population is to play each

strategy with equal probability, the Nash equilibrium of the game.

In the Hawk–Dove game, the heterozygote could be a ‘retaliator,’ which will

respond to a hawk’s aggressive behavior with aggressive behavior, but acts like a

dove otherwise. This amounts to a novel pure strategy which is not a convex

combination of the homozygotes’ strategies.11 With these three strategies, under the

replicator dynamics the only stable equilibrium in which half of the organisms play

hawk and half play dove, like in the game with two strategies (Maynard Smith

1982).12 When heterozygotes are retaliators, the population ends up at a

stable polymorphic equilibrium at p & 0.89. Roughly 69.4 % of the population

plays dove, 27.8 % plays retaliator, and 2.8 % plays hawk. In the pure strategy case,

there is much more dovish behavior than in the mixed strategy case. This is because

the retaliator heterozygote acts as sort of a buffer for the doves against invading

Table 2 Hawk–Dove–

Retaliator
Dove Retaliator Hawk

Dove 1 1 0

Retaliator 1 1 -1

Hawk 2 -1 -1

11 It is, however, still in some sense ’intermediate’ between the two homozygote strategies because an

organism with this type of strategy will sometimes play hawk and sometimes play dove, depending on

what type of organism it interacts with. If we are thinking in terms of alleles encoding for a ‘dose’ of

some gene product, we can think of the retaliator as having one ‘dose’ of whatever causes the disposition

for hawkish behavior and one ‘dose’ of whatever causes dovish behavior—the retaliator has some

disposition toward peaceful behavior, as seen when it interacts with a peaceful organism, but also has the

disposition to act aggressively if faced with another aggressive organism. The same sort of explanation

can be given in example 3 for why tit-for-tat can be considered an intermediate phenotype.
12 Selective pressures can also lead toward a steady state of all retaliators or of some combination of

retaliators and doves. This set of states can be evolutionarily important in that it can attract a large portion

of the possible initial populations. However, states within this set are not stable equilibria in the sense

defined above, but are instead what is called Lyapunov stable. That is, when there is some mutation,

evolutionary pressures will not drive the population back to the state in which it started. Evolutionary

pressures will instead drive the population to a state near where it started. A somewhat similar situation

occurs with tit-for-tat in example 3. This sort of phenomenon is also taken to show the limitations of ESS

methodology, but will not be addressed in detail here (see Huttegger and Zollman 2013, for a discussion).
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hawks—as hawks and thus the A2 allele increase in frequency so do the retaliators.

The hawks do much less well against retaliators than do doves, so they are

prevented from comprising a large part of the population.

Example 3: (Iterated) prisoner’s dilemma

The Prisoner’s Dilemma is another game frequently encountered in the biological

literature. It is often used to explain the evolution of biological altruism as an

organism who ‘cooperates’ can be interpreted as sacrificing its own fitness in order

to increase the fitness of another.13 I assume that an individual can sacrifice 1 unit of

fitness to increase the fitness of another by 3 units. Further, I assume the game is

iterated, or played repeatedly against the same organism, 10 times. The payoffs are

shown in Table 3.

In the game with only cooperators and defectors, there is only one stable equi-

librium which corresponds to a population of all defectors (p = 0), the Nash

equilibrium, for both the replicator dynamics and the mixed strategy case.

The fact that the game is iterated allows for a variety of possible additional

strategies. One commonly used strategy is tit-for-tat, which cooperates on the first

iteration and only defects if defected against in the previous iteration (Young and

Foster 1991, Axelrod 2006, Nowak 2006). Applying the replicator dynamics to the

game with these three strategies reveals that again there is only one stable equi-

librium where the population is composed entirely of defectors.14 However, in the

pure strategy case with the heterozygote playing tit-for-tat, there are two

stable equilibria. Again, one of these is composed of all defectors, but there is

another at p & 0.81 where of the population roughly 65.7 % cooperate, 30.7 %

play tit-for-tat, and 3.6 % defect. This is similar to the phenomenon that occurs in

the Hawk–Dove game. Here, there is more altruistic behavior in the pure strategy

case than in the mixed strategy case because in the pure strategy case, tit-for-tat can

act as a buffer protecting the altruists from invasion by defectors (Rubin 2015).

One might be concerned that, at least with Hawk–Dove and the iterated

Prisoner’s Dilemma, the heterozygote strategies chosen in the pure strategy case are

more cognitively demanding than the heterozygote strategies in the mixed strategy

case. These heterozygote strategies were chosen because they are salient in the

literature. A reader familiar with models of these games will immediately see how

the results differ from those produced in other models of the same games. However,

the results are not dependent on the cognitively complexity of the heterozygote

strategy; the point can be made with models using less cognitively complex

heterozygote strategies. For an example of such models for Hawk–Dove, see

the ‘‘Appendix’’.

13 An altruistic act in this sense is just one that decreases the fitness of the actor and increases the fitness

of another.
14 There are also steady states composed of mixtures of altruists and organisms playing tit-for-tat, but

these are not stable equilibria in the sense described above.
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Selective pressures and stability

Before investigating stability criteria, there are a couple of significant observations to

be made about selective pressures in the examples above. The selective pressure acting

on the population at the phenotypic level is best visualized by graphing the fitness

of each phenotype in the population for different proportions of strategies, as in

Fig. 1A–C, The first thing to note is that in the pure strategy case there are phenotypic

fitness differentials at a stable equilibrium. It might seem odd to call such a population

state an equilibrium, as equilibria are generally thought of as population states in which

there are no fitness differences. However, each allele has the same fitness at

equilibrium, so the allele frequencies, and thus the genotype and phenotype

frequencies, do not change over time. Second, this means that different types of

selective pressure are at work in pure strategy cases. For example, in Fig. 1Ab, the

heterozygote strategy is the most fit around the equilibrium. This points to an important

aspect of the dynamics of the pure strategy case: heterozygote advantage can play a

vital role in maintaining a stable equilibrium of the population.15 While not generally

considered as part of evolutionary game theoretic analysis, there are noteworthy

examples of heterozygote advantage. One classic example is the sickle cell mutation,

which causes sickle cell anemia in people with two mutated genes, but in heterozygotes

produces malaria resistance with little to no symptoms of sickle cell anemia.

Neither of these features are found in the mixed strategy case. When the effective

strategy is a pure Nash equilibrium, there is only one strategy present in the

population, so all strategies present will have the same fitness by default (because

there is only one strategy present in the population). As seen in Fig. 1Aa, Ba, when

the effective strategy of the population is a mixed Nash equilibrium, all strategies

present have the same fitness so the population composition is not changing. In fact,

in the mixed strategy case (with intermediate inheritance), there can never be fitness

differentials at equilibrium because the heterozygote’s fitness is always between the

fitness of the two homozygotes’ (except at an equilibrium where all the phenotypes

present have the same fitness). Since the heterozygote plays the same strategy as one

homozygote with some probability and the strategy of the other homozygote with

some probability, it will receive the same payoff as one or the other homozygote

with some probability, meaning that its fitness is a weighted average of the

Table 3 Iterated Prisoner’s

Dilemma
Cooperate Tit-for-tat Defect

Cooperate 30 30 -10

Tit-for-tat 30 30 -1

Defect 40 4 0

15 I should make it clear that I will use the term heterozygote advantage in the loose sense just to mean

that the heterozygote tends to have the highest fitness. Cases of heterozygote advantage, while seemingly

rare (Bubb et al. 2006), are of interest in evolutionary biology. For one thing, they are a way of

maintaining genetic variability in diploid populations. However, the significance of genetics in the pure

strategy case is not dependent on the heterozygote being the most fit. As can be seen in Fig. 1Ba, the

heterozygote may simply shift the location of the rest point away from the population ESS.
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homozygotes’ fitnesses. That is, the heterozygote’s fitness is a convex combination

of the homozygote fitnesses because of the way the heterozygote strategy is a

convex combination of homozygote strategies.

Heterozygote advantage has been traditionally presented as a problem for

adaptionist thinking when there is no frequency dependent selection, so it should be

unsurprising that remains a problem when there is frequency dependent selection.

However, with frequency dependent selection there’s an additional complication: the

phenotype of the heterozygote can affect the location of the rest point even when it is

not the most fit. For example, Fig. 1Bb shows that the heterozygote retaliator strategy

is never the most fit in the Hawk–Dove game. Yet, if we compare the location of the

rest point in the pure strategy case to the mixed strategy case, we see that there is

much more dovish behavior in the pure strategy case. The fact that heterozygotes

play the intermediate retaliator strategy rather than an intermediate mixed strategy
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homozygote. The stable polymorphic equilibrium is indicated by a vertical line.
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means that doves have a fitness advantage for a larger portion of the state space.

Since the fitness of a strategy depends on the frequency of the other strategies in the

population, the strategy assigned to the heterozygote can affect the location of the

rest point by affecting the fitness of the homozygotes. In this case, the presence of the

heterozygote retaliators increases the fitness of doves and decreases the fitness of

hawks, because doves do better against retaliators than hawks do.

ESS methodology

These observations show that the intermediate strategy assigned to the heterozygote

can qualitatively affect the evolutionary process. The effect can be highlighted by

considering how ESS methodology fails to predict these evolutionary outcomes. We

will first look at this stability concept for short-term evolution, evolution with a

given set of genotypes. It is well-known that the heterozygote strategy, or other

constraints, can make ESS predictions and dynamical outcomes fail to coincide in

the short-term.

In the mixed strategy case, if the ESS can be reached by some combination of the

strategies in the population, as is the case in the examples here, then the ESS is a

stable equilibrium of a genetic model (Maynard Smith 1982).16 This means that the

evolutionary outcome, in terms of the effective strategy of the population, can be

predicted based solely on the payoff table of the game. This calls attention to the

fact that the role the heterozygote usually plays in genetic models is relatively

unimportant. The heterozygote may be assigned to play the same strategy as either

one of the homozygotes or it may be assigned to play some mix of the two

strategies, but in any of these cases the same phenotypic outcome is predicted by the

model. The same phenotypic outcome will also be predicted by a model using the

replicator dynamics. That is, the effective strategy of the population at equilibrium

is not affected by a choice among one of these modeling assumptions.

This is in contrast to the pure strategy case, where we have seen that the choice of

strategy assigned to the heterozygote can drastically affect the population composition at

equilibrium and the population is prevented from reaching an ESS due to the

probabilistic recombination of genes. In this case, the underlying genotype to phenotype

map makes ESS methodology fail to be useful in describing the dynamic process, at least

in the short term. This phenomenon is similar to that described in Hines and Bishop

(1984a). They show, using the Rock-Paper-Scissors game, how an ESS can fail to be a

stable equilibrium. In Hines and Bishop’s examples, both homozygotes and the

heterozygote play different mixtures of rock, paper, and scissors. Notably, they consider

cases where the heterozygote strategy is not a convex combination of the homozygotes’

strategies. They show how the ESS can be ‘trapped’: if we represent geometrically the

set of all possible population effective strategies, the effective strategy corresponding to

the ESS can fall in an empty space or ‘hole’ in this set.

16 This might not be the case if, for example, in the Hawk–Dove game each phenotype played hawk more

than half the time.
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Their examples illustrate how an ESS must be attainable and maintainable in

order to be a stable equilibrium. In must be attainable in that some combination of

the genes present in the population can yield a population effective strategy that is

the ESS. For instance, if in the prisoners’ dilemma there is an allele for cooperating

50 % of the time and an allele for cooperating 100 % of the time, the ESS of playing

defect 100 % of the time would not be attainable. The ESS also must be

maintainable in that once the populations’ effective strategy is the ESS it will

remain that way. For instance, in the pure strategy case of the Nash Demand game,

the ESS of demand 1/2 is not maintainable because even if the population were to

start out entirely composed of the heterozygous demand 1/2 organisms, there would

be homozygotes introduced after mating. This paper makes a point similar to Hines

and Bishop (1984a), but differs in that it explores how the phenotypic gambit fails in

simpler cases with a more intuitive genotype-to-phenotype map. These differences

motivate concerns about the use of ESS methodology for long-term evolutionary

processes, which we turn to next.

If the ESS is both attainable and maintainable then, under certain assumptions,

the effective strategy of a diploid population at equilibrium is an ESS (Hines and

Bishop 1983) and the ESS will be a stable equilibrium of the dynamics (Hines and

Bishop 1984b). However, these results depend on assumptions about the underlying

genetics and genetic considerations, such as linkage17 and epistasis,18 have led some

to argue that ESS methodology is best suited for analysis of long-term evolutionary

processes. (Eshel 1982, 1996; Eshel and Feldman 2001). For long-term evolution,

we consider that any possible allele, from some large enough set of ‘relevant’

alleles, could be introduced through mutation. The process is one of successively

introducing potentially beneficial mutations into a population. Each time a mutant

allele successfully invades, this starts a new process of short-term evolution which

evolves to its end point before another potentially beneficial allele is introduced.

This is often described as the ‘streetcar theory of evolution’ as the end points of

short-term evolutionary processes can be thought of as stops along the way to the

final destination reached by long-term evolution (Hammerstein 1996). While short-

term and long-term evolutionary processes are connected, they are qualitatively

different.

It has been suggested that in the context of long-term evolution the phenotypic

gambit is a safe assumption, that predictions based on genetic models and ESS

methodology will ‘‘meet at the terminus of the evolutionary streetcar’’ (Marrow

et al. 1996). There have been many results connecting the outcomes of long-term

evolutionary processes with ESS methodology, which are proven on the assumption

that any possible allele can invade the population (see Hammerstein and Selten

1994; Weissing 1996; Eshel and Feldman 2001 and references therein). Note that

the set of possible strategies may be still be restricted to those considered in a

model, so ‘any possible allele’ invading means that the mutant alleles can code for

17 Linkage describes the fact that genes located close together on the same chromosome tend to be

inherited together.
18 Epistasis occurs when a gene or genes at one locus affect or ‘modify’ the effects of a genes or genes at

another locus.
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any propensity for playing some combination of these strategies. When we

generalize from simple models to more abstract scenarios, with many possible

strategies and alleles and no specific game to ground our intuitions, it might be hard

to tell how strong this assumption is. The models provided above can serve to make

clear the sorts of intuitions we might have when thinking about the mixed strategy

case or the pure strategy case and how these intuitions transfer over into thinking

against a more abstract backdrop.

In the mixed strategy case, invasion by other possible mutant alleles means that

the population’s genetic composition can change substantially over time.

However, since the population is already at an ESS, the effective strategy of the

population does not change over time. This means that any new alleles that persist

in the population will have the same average fitness as the existing alleles and will

only increase in frequency through drift. For instance, in example 2, the effective

strategy of the population is to play hawk half of the time and dove half of the

time. If a new allele were to arise within the population which caused any

individual with that allele to play each strategy with equal probability, then this

allele would have the same fitness as the population average fitness (since

organisms with this allele play the same strategy as the population plays on

average). What the underlying genetics of the end product of long-term evolution

will look like cannot be predicted by ESS methodology but the effective strategy

of the population can be (Eshel 1996).

When we generalize to abstract scenarios with many possible strategies and alleles,

where the ESS strategy might not initially be reachable by some combination of

available strategies in the population, having the mixed strategy case in mind makes

considering any possible invading allele seem unproblematic: if the alleles code for

different mixtures over the strategies it is reasonable to suppose that any mixture is

possible in the long run. Similarly, if we think of the heterozygote as playing a

different mix of the same pure strategies as the homozygotes, as in Hines and Bishop

(1984a), considering mutations that allow different genotypes to play these pure

strategies with different probabilities likely seems uncontroversial.

However, there is no reason to assume that a genotype-to-phenotype map needs

to assign genotypes different probabilities of playing certain strategies. Genotypes

might instead map to different pure strategies, as in the Nash Demand game where

they mapped to different amounts an organism could demand. This leads us to

consider the pure strategy case, in which the strategy with the highest fitness at the

equilibrium may be played by the heterozygote and is only prevented from taking

over the population by probabilistic recombination of genes. If this strategy is an

ESS, as in example 1, any mutant gene that allows a homozygote to play this

strategy would take over the population. Thus, if we allow that any possible mutant

allele can invade, the average phenotype of the population will be different when

looking at short-term versus long-term evolution.

However, in some cases there might be reason to believe that certain strategies may

only be played by heterozygotes and that assigning a certain strategy to a heterozygote

is the most biologically realistic modeling assumption, even in the long-term. Then,

the set of relevant mutations to consider would not include those which would allow

the population effective strategy to be the ESS. One might again think of sickle cell
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and malaria resistance as an example: in heterozygotes one allele codes for normal

hemoglobin and the other for sickle cells. It is not clear that a homozygote could have

both the malaria resistance associated with sickle cells, and the lack of sickle cell

anemia from also having normal cells.19 While things are obviously more complex in

the behavioral setting, we might want to similarly restrict the set of relevant mutations

to consider. This is not to argue that the pure strategy case is more biologically

plausible. It is difficult to see how we could know a priori which genotype to

phenotype map is more plausible in any particular case, in which case we should not

ignore the possibility that the underlying genetics of certain behaviors could be more

like the pure strategy case than the mixed strategy case.

There are a couple ways to think of this in relation to the argument that we can

use ESS methodology to make predictions about the outcome of long-term

evolution. First, and most obviously, it shows that genetic considerations can

prevent ESS methodology from being used reliably to predict long term

evolutionary outcomes. Heterozygote advantage is a well-known phenomenon but

examples of how it can come into play in evolutionary game theory are hard to

come by and it is not often discussed as a reason why evolution might not lead to an

ESS. Second, you might think of this as demonstrating how strong of an assumption

it is to allow that any possible allele can invade. The assumption that any allele can

invade effectively assumes away the possibility that the importance of the

heterozygote strategy will be maintained in the long term by assuming it is always

possible that a mutation could arise which lets the heterozygote strategy be played

by a homozygote. In other words, it assumes that in the long-run the ESS will

always end up being genetically attainable and maintainable.

When talking about long-term evolution, the set of possible mutations is

restricted to those which encode for propensities to play strategies from some

predetermined set, so it is not unreasonable to suggest that we might restrict the set

of possible mutations in some other way. If there is reason for a restriction in some

context, then in that context there is reason to expect that the connection between

ESS methodology and long-term evolutionary stability will break down. This goes

to show that one should be wary of considering ESS predictions to be robust for all

reasonable genotype spaces.

Concluding remarks

This paper has shown important ways in which the phenotypic gambit can fail and,

when it does fail, how one can build simple genetic models which illuminate the

possibilities of evolution. The models provided here demonstrate that genetic

19 For instance, one might argue that a translocation could allow for a copy of each allele to be on one

chromosome. Then, an organism could be homozygous with respect to each locus (one locus is

homozygous for the allele encoding sickle cells, the other locus homozygous for the allele encoding

normal blood cells). However, these mutations are generally not considered in a long-term evolutionary

models, which assume a specific number of loci. One way of thinking about this point is that these sort of

mutations change the genetic system— a trait with one-locus inheritance, for example, would become a

trait with two-locus inheritance (Grafen 1984, 65).
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models can lead to interesting new equilibria in several well-known games. The

pure strategy case shows how the heterozygote strategy can play an important role

in evolutionary game theoretic dynamics which, for obvious reasons, is not

discussed in phenotypic modeling. Relatedly, the pure strategy case shows an

important area where and ESS methodology can fail to apply reliably as a stability

concept for both short-term and long-term evolution. The more commonly assumed

mixed strategy case obscures the fact that heterozygote strategies can play an

important role in evolution by assuming the heterozygote strategy is a particular

kind of linear combination of the homozygotes’ strategies that makes ESS

methodology easy to apply.

This is not to argue that we should be wary of models employing the phenotypic

gambit. These models are a valuable way of investigating the evolutionary impacts

of traits of interest. Nor is it to argue that none of the authors cited here are aware of

the limitations discussed above. Maynard Smith (1982) mentioned heterozygote

advantage as a problematic case for ESS methodology from the beginning. That

said, models that fall under the pure strategy case are not used often because they

add mathematical complexity and many times connections between ESS method-

ology and long-term evolutionary outcomes are taken to be robust for any type of

genotype to phenotype map. The simple models here demonstrate concretely that

there are plausible genotype to phenotype maps that may be of interest to modelers

for which ESS methodology will not apply even in long-term evolution. Further,

they show that heterozygote advantage is not the only problematic case for the

phenotypic gambit and adaptionist programs; the heterozygote can affect the

evolutionary outcome even when it is never the most fit.

Evolutionary game theory is useful because it provides tools for exploring the

possibilities of evolutionary change, and genetic models are a necessary component

of a complete exploration. Assuming we know the underlying genetics of a trait and

making predictions given these assumptions provides us with important theoretical

knowledge about evolutionary processes. This theoretical knowledge in turn allows

us to draw conclusions about the nature of evolutionary change (Eshel 1996,

490–493). However, in drawing these conclusions it is important to consider and

reconsider the assumptions made in models. When making a gambit, one should be

aware of the ways in which the gambit can fail and how to proceed with modeling

when it does.
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Appendix 1: Hawk–Dove–Goose

One might be concerned that the analysis in this paper is somehow affected by the

fact that the heterozygote strategies described in the pure strategy case for the

Hawk–Dove game and the iterated Prisoner’s Dilemma are more cognitively

complex than in the mixed strategy case. To ease this concern, I consider an

alternative approach to modeling the heterozygote pure strategy in Hawk–Dove. A
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natural suggestion is that the heterozygote does not condition their behavior on the

type of their counterpart, but the level of aggression displayed is somewhere

between hawkish and dovish. We might call such an individual a ‘goose’.

When a goose interacts with a hawk, the hawk gets the resource because it is

more aggressive. Likewise, when a dove interacts with a goose, the goose gets the

resource because it is more aggressive. What happens when two geese meet? There

are two plausible options. First, the two geese may get enter a conflict and end up

splitting the resource and the cost of conflict. In this case we would reasonably

assume that the cost of conflict for two geese is less than the cost for two hawks, as

the level of aggression displayed is less. The payoffs for the interaction among these

three types is shown in Table 4.

For option 1, the replicator dynamics leads to a polymorphic equilibrium where a

third of the population are geese and two-thirds of the population are hawks. By

contrast, a genetic model with heterozygous geese leads to one stable polymorphic

equilibrium at p & 0.20, where the population is roughly 3.9 % doves, 31.7 %

geese, and 64.4 % hawks.

The second option is that the two geese end up peacefully splitting the resource.

The idea behind this is that geese are aggressive enough to signal aggression but not

aggressive enough to actually engage in conflict. So both will signal aggression, but

back down once they see the aggressive signal. The payoffs for the second option

are shown in Table 5.

In option 2, for the replicator dynamics there is one stable equilibrium, composed

of 50 % geese and 50 % hawks. For the genetic model there is one polymorphic

equilibrium at p & 0.26, where about 6.8 % are doves, 38.6 % are geese, and about

54.6 % are hawks. In either case, we can see that the genetic models differ from the

phenotypic models and, more importantly, differ from the genetic mixed strategy

case discussed in the main text.
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