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Abstract
The concept of fitness is central to evolutionary biology. Models of evolutionary change typically 
use some quantity called “fitness” which measures an organism’s reproductive success. But what 
exactly does it mean that fitness is such a measure? In what follows, we look at the interplay between 
abstract evolutionary models and quantitative measures of fitness and develop a measurement-theoretic 
perspective on fitness in order to explore what makes certain measures of fitness significant.

1. Introduction

The concept of fitness is central to 
evolutionary biology. Fitness is a measure 
of an organism’s reproductive success and is 
thus a crucial element of the theory of natural 
selection. But what exactly does it mean that 
fitness is such a measure?
	 The aim of this paper is to develop a 
measurement-theoretic perspective on fit-
ness in order to explore what makes certain 
measures of fitness significant. We are hereby 
guided by the pioneering work of Wagner 
(2010),1 who writes that:

[f]itness is not a primary observable feature 
of organisms, such as their weight, color, and 
chemical composition that are defined indepen-
dently of any further biological insight. Fitness 
is a concept that plays a role in explaining 
evolutionary dynamics. . . . For that reason the 
definition, measurement and the mathemati-
cal properties of fitness cannot be considered 
separately from the theory of natural selec-
tion. In particular, the quantitative concept of 
fitness only makes sense if it can be inserted 
into mathematical models to predict or explain 

evolutionary change. The mathematical theory 
of evolution and the measurement of fitness are 
mutually dependent.

	 Here, Wagner refers to the well-known 
interplay between theory and measurement. 
Measurements of quantities are not per-
formed in a theoretical vacuum. Rather, there 
is a coevolution between the development of 
theory and measurement practice. Theory de-
velopment guides the design of measurement 
apparatuses, and increased experience with 
measurement instruments and their outcomes 
feeds back on theories and models. Once a 
theory is well-developed and has reached a (at 
least temporary) reflective equilibrium, mea-
surement can be viewed from the perspective 
of that theory (see van Fraassen 2008, for 
a more detailed discussion). The concepts 
used in measurement have a definite mean-
ing within a theory and cannot be understood 
properly without the theoretical context.
	 In what follows we study the interplay be-
tween evolutionary models and quantitative 
measures of fitness. Our approach is inspired 
by the method of dimensional analysis in 
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physics (Krantz et al. 1971/2007). The basic 
idea of dimensional analysis is that how cer-
tain quantities are combined in equations puts 
coherence constraints on them. The equations 
we are going to consider are models of evo-
lution. Such models typically involve some 
quantity called “fitness” that influences the 
dynamical behavior of the system. We are 
interested in the following question: what are 
the properties of the dynamics that ought to 
be preserved in order to have a useful model 
of evolutionary change? As we shall see, 
depending on the properties that ought to 
be preserved, we get more or less stringent 
requirements on the measures of fitness used 
in models of evolutionary change.

2. Measurement Theory
	 In all evolutionary models, fitness is rep-
resented by a number. Although their famil-
iarity often belies this fact, numbers have 
an enormous amount of structure that can 
sometimes imply stronger empirical claims 
than intended. To use a familiar example, if 
I say “it is twice as hot today as yesterday,” 
I am saying something meaningless. If it is 
30 degrees Fahrenheit today and yesterday it 
was 15F does not imply that it is meaningful 
to say today is “twice as hot” as yesterday. 
This is easily illustrated by the fact that 30F 
is approximately –1C and 15F is approxi-
mately –9.5C. So, the statement “it is twice 
as hot today as yesterday” is true under one 
valid temperature scale but not under another 
equally valid scale. Some parts of the numeri-
cal structure of Fahrenheit (or Celsius) imply 
more than we are entitled to say.
	 This example illustrates that numbers can 
be assigned to empirical objects in completely 
arbitrary ways. In science, there must be 
constraints on how numbers are interpreted, 
since numerical assignments are supposed 
to capture something about empirical real-
ity. Otherwise, results of measurements or 
models may just be due to the mathematical 
structures we use and have nothing to do with 

the empirical reality we are really interested 
in. In the case of fitness, we are interested in 
how much structure our theoretical apparatus 
requires, and in the subsequent sections we 
will turn to that. But, first, we need to quickly 
review how these questions are addressed.
	 The theory of measurement offers a system-
atic approach to the study of the properties of 
numbers used in measurement. Measurement 
theory goes back to at least von Helmholtz 
(1887), and has made significant advances in 
the second half of the twentieth century. Of 
particular importance is the representational 
theory of measurement, which was developed 
mainly in mathematical psychology (Krantz 
et al. 1971/2007; Suppes et al. 1989/2007; 
Luce et al. 1990/2007). The representational 
theory of measurement aims at identifying 
qualitative axioms—that is principles that 
do not involve numbers—that capture a mea-
surement concept, and then trying to establish 
that there exists a numerical representation of 
the concept that reflects its qualitative proper-
ties. Well known examples are the measure-
ment of physical quantities like length, mass, 
or time (Hölder 1901).
	 The representational theory of measurement 
does not give answers to all philosophically 
significant aspects surrounding measure-
ment.2 We set these issues aside here. What is 
important for our project is that the represen-
tational theory of measurement is very well 
suited for exploring the relationship between 
invariance and measurement. This relation 
was discussed extensively by Stevens (1946), 
who identified a number of scale types. These 
scale types identify what parts of a numerical 
structure correspond to empirical claims and 
what parts of the structure should be ignored. 
This work was later substantially extended by 
measurement theorists (Narens 2002).
	 The three most common scale types are or-
dinal scales, interval scales, and ratio scales. 
Each one is based on an assignment of real 
numbers to objects that are ordered accord-
ing to a binary weak ordering relation (i.e., a 
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relation that is connected and transitive). “At 
least as long as” is one canonical example. A 
numerical assignment that captures just the 
order is an ordinal scale. More precisely, sup-
pose R is a weak ordering of a set of objects; 
aRb means that object a is not ranked above 
object b. Then an ordinal scale, s, assigns 
numbers to all objects such that s(a) ≤ s(b) 
if and only if aRb. This is the sense in which 
the scale s represents the relation R.
	 Given a particular s that represents R, one 
can ask how s might be transformed into 
another numerical assignment s' while con-
tinuing to represent R. In the case of a scale 
s, any strictly monotonic transformation of is 
an admissible representation of R. As a result, 
ordinal scales are unique only up to strictly 
monotonically increasing transformations. 
This implies that, in order to be meaning-
ful, numerical statements must be invariant 
relative to monotonically increasing scale 
transformations. In other words, numerical 
statements must be true about all ordinal 
scales that represent R. Otherwise, they go 
beyond how R orders empirical objects and 
rely on a particular choice of scale.3 For 
instance, ordinal scales do not allow the cal-
culation of expected fitness since the values 
of expected fitness can be changed arbitrarily 
under strictly monotonic transformations.
	 Interval scales have more structure than 
ordinal scales. In addition to representing 
the ordering relation, they preserve ratios of 
differences. This implies that interval scales 
are unique up to positive affine transfor-
mations. Starting with any scale s, we can 
multiply s with an arbitrary positive number 
and add an arbitrary number to get another 
admissible scale. An example of an interval 
scale is the measurement of temperature in 
Celsius or Fahrenheit. This is why statements 
like “twice as hot” are meaningless, because 
that comparison is not invariant over positive 
affine transformations.
	 Positive affine transformations correspond 
to choosing different zero and units of a scale. 

Ratio scales have a natural zero, so the only 
conventional aspect is choosing a unit. Thus, 
a ratio scale is unique up to multiplication by 
a positive number. This implies that ratios of 
scale values are invariant across all scales. 
Examples of ratio scales are length or weight.
	 There are scales with no transformations 
that turn it into another admissible scale, such 
as counting the number of objects in some 
set. They are known as absolute scales. For 
absolute scales all numerical statements are 
invariant.
	 In their famous development of utility 
scales, von Neumann and Morgenstern pro-
vide a strategy for transforming ordinal pref-
erences over lotteries into an interval scale 
(von Neumann and Morgenstern 1944). The 
underlying idea is that if we take a series of 
objects and also a randomizing device, and 
if people obey a set of “consistency” axioms, 
we can extract more information that allows 
us to utilize an interval scale.
	 Traditional economics has, for some time, 
built itself on von Neumann–Morgenstern 
utility. Modern economic game theory is no 
exception, and the fundamental predictions 
of game theory are invariant over legitimate 
transformations of utility. If one identifies 
all the Nash equilibria of a game for players 
with particular utility functions, those Nash 
equilibria are invariant over all positive af-
fine transformations of the players’ utilities. 
Traditional economic game theory does not 
step beyond the limitations imposed by the 
utility theory on which it is based.
	 So far, we have begun with a scale—or-
dinal, interval, or ratio—and discussed 
what scientific claims would be regarded as 
meaningful on those scales. We can also go 
in the reverse direction: we can begin with a 
scientific theory where we designate certain 
classes of claims as meaningful and then ask: 
what scales would be required for the funda-
mental quantities to underwrite our claims 
of meaningfulness? This mode of inquiry 
allows one to determine the commitments 
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that a scientific theory makes regarding the 
structure of its fundamental parts.
	 By way of illustration, we could begin 
with traditional game theory and designate 
that all Nash equilibria are “meaningful.” 
We could then ask, what is the weakest scale 
for the utilities that would warrant those 
claims of meaningfulness? In this case, the 
answer would be the interval scale. Utility 
could not be an ordinal scale because some 
monotonic transformations of the underlying 
utility functions would alter the location of 
mixed strategy Nash equilibria.
	 Game theory was imported into biology by 
Maynard Smith and Price (1973) and the first 
formal model of evolutionary change in game 
theory was presented by Taylor and Jonker 
(1978). The move from economics to biology 
appears straight-forward: the concept of util-
ity is replaced by fitness and the concept of 
maximization by rational choice is replaced 
with the optimizing force of evolution by 
natural selection. As we will see, things are 
slightly more complicated.

3. Evolutionary Dynamics
	 The basic evolutionary model we are go-
ing to consider is known as the replicator 
dynamics in evolutionary game theory and 
as Wright’s selection equation in population 
genetics (Taylor and Jonker 1978; Hofbauer 
and Sigmund 1998; Wagner 2010). We fo-
cus on the continuous-time version of this 
dynamics, but the discrete time version can 
be treated in the same way.4

	 Suppose there are n traits, s,  .  .  ., sn, in a 
population. Traits may be behavioral strate-
gies or other phenotypic characteristics. In 
population genetics they represent alleles. We 
denote the relative frequency of individuals 
having trait i by xi. The population state is 
given by the vector of relative frequencies 
x = (x1, . . ., xn). Let fi (x) be the fitness of trait 
i if the population is in state x. We make the 
standard assumption that fi is a linear function 
of the basic fitness type i gets from interaction 

with type j, that is, fi(x) = Σj  fi ( j)xj. For now, 
we don’t know what exactly fitness is. All we 
assume is that it is some real-valued function.
	 According to the replicator dynamics, the 
rate of change in trait i is given by the follow-
ing system of ordinary differential equations:

ẋi = xi ( fi (x) – f̄ (x)),	 (1)

where f̄ (x) = Σixi  fi (x) is the average fitness in 
the population. The replicator dynamics is a 
particular instance of the idea that traits with 
above average fitness increase in frequency, 
whereas traits with below average fitness 
decrease, which is the fundamental idea of 
natural selection.
	 A common variant of the replicator dy-
namics is the adjusted replicator dynamics 
(Maynard Smith 1982):

ẋi =
xi ( fi (x) – f̄ (x))

(2)
f̄ (x)

	 The dynamics (2) results from the replica-
tor dynamics by re-scaling with the average 
fitness. We will see below that the invariance 
properties of the replicator and the adjusted 
replicator dynamics can be quite distinct.
	 We will also consider the two-population 
replicator dynamics. The number xi repre-
sents the relative frequency of individuals 
with trait i in population one, and the number 
yi represents the relative frequency of indi-
viduals with trait j in population two. The 
state of the system is given by x = (x1, . . ., xn) 
and y = (y1, . . ., ym) where n and m are the 
number of traits in populations one and two, 
respectively. The two populations interact 
with one another, giving rise to the system:

ẋi = xi ( fi (y) – f̄ (x,y)),	 (3)

ẏj = yj ( fj (x) – f̄ (y,x)),
	 Here, fi (y) is the fitness of trait i in popula-
tion one if population two is in state y, fj (x) 
is the fitness of trait j in population two if 
population one is in state x, and f̄ (x,y), f̄ (y,x) 
are the respective average fitnesses in popula-
tions one and two.
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	 The replicator dynamics has been widely 
used in population genetics and evolutionary 
game theory. Besides obvious applications in 
evolutionary biology, it is also important in 
studies of cultural evolution (Weibull 1995; 
Hofbauer and Sigmund 1998).
	 The replicator dynamics models a selec-
tion process in an explicitly dynamical way. 
Often, researchers prefer to identify the evo-
lutionarily stable states of a population. In 
the present setting, a state x is evolutionarily 
stable if the following two conditions hold 
for all alternative strategies y:

(i) f(x, x) ≥ f(y, x)

(ii) If f(x, x) = f(y, x), then f(x, y) > f(y, y)

	 The first condition says that x is a best re-
sponse to itself (i.e., it is a symmetric Nash 
equilibrium). Thus, in a majority x popula-
tion, no other trait does better against the 
majority. The second condition says that if 
there is an alternative best response y, x has a 
higher fitness when interacting with y. Hence, 
a population that mainly consists of x indi-
viduals cannot be invaded by a small number 
of individuals that exhibit an alternative best 
response y, assuming the population is large 
and interactions are uncorrelated.
	 Evolutionarily stable states are asymp-
totically stable rest points of the replicator 
dynamics (1), but the converse is not true 
(Hofbauer and Sigmund 1998). Thus, already 
at the level of the replicator dynamics evolu-
tionary stability does not capture every type 
of stable rest point. For this and other reasons, 
the concept of evolutionary stability should 
be used with caution (Huttegger and Zollman 
2013; Rubin 2016). But despite limitations, 
evolutionary stability is a useful and influen-
tial concept in evolutionary biology.

4. Invariance and  
Evolutionary Dynamics

	 We are now in a position to study fitness 
as used in the replicator dynamics in terms 
of invariance. Okasha (2018, §6.6) discusses 

fitness functions along broadly similar lines, 
but we will provide a more thorough analysis 
here.
	 Models in the biological and social scienc-
es, unlike models in physics and chemistry, 
are often not supposed to provide precise nu-
merical predictions. Instead, the predictions 
of evolutionary models are often thought of 
as qualitative, in that they predict end states or 
directions of evolution, but not necessarily the 
state of a given population at a particular time. 
Thus, the idea of the invariances governing 
models such as the replicator dynamics has to 
be modified. We need to clarify which aspects 
of a dynamical model should be preserved. 
We will consider several possibilities. Once 
the invariances have been determined, we 
then show what constraints this places on the 
fitness function used in the model.
	 We start with the one-population replica-
tor dynamics. The system (1) defines a set of 
trajectories on a simplex of dimension n – 1 
(n is the number of strategies of the underly-
ing game). There are various aspects of that 
system that we might want to preserve:

1.	 The solution trajectories should be pre-
served together with the velocity with 
which they are traversed.

2.	 Only solution trajectories should be pre-
served.

3.	 Certain qualitative features, such as the 
location of rest points and their stability 
properties, should be invariant.

	 The first case is the most restrictive. Sup-
pose the fitness functions in (1) are changed 
in some way. Then the trajectories will be 
altered unless the change involves only 
multiplication of fitnesses by a positive real 
number.5 That is, if we multiply fitnesses by 
a > 0, we have

ẋi = axi ( fi (x) – f̄ (x))	 (4)

	 This system has the same trajectories as the 
original one, but the trajectories are traversed 
slower or faster depending on whether a is 
less than or larger than 1. To see why, notice 
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that multiplying with a leaves the direction 
of the vectors in the vector field generated 
by (1) the same (Weibull 1995, §3.1.2), but 
the length of the vectors is determined by the 
difference in fitness which will be altered by 
a. Thus, if we want to preserve the trajectories 
and the velocity, then the fitness function f has 
to be an absolute scale.
	 Consider the simple coordination game 
pictured in Figure 1a. The trajectories and 
speed of change are pictured in Figure 1b. If 
fitness is multiplied by a constant 0 < a < 1, 
the trajectories remain the same, but the speed 
of motion is reduced. Conversely if they are 
multiplied by a > 1, the speed of motion is 
increased.
	 The situation is different in the adjusted 
replicator dynamics (2). If f is a ratio scale, 
then not just the trajectories but also the time 
scale factor are invariant. This follows since 
the scaling factor a > 0 appears in both the 
numerator and the denominator of (2). The 
velocity at which the system moves along the 

orbits is the same for all admissible scales. 
Thus, what is invariant under an evolutionary 
dynamics depends on the evolutionary model.
	 Therefore, if we are interested in preserving 
both the trajectories and the speed of evolu-
tion, the replicator dynamics requires that 
fitness represents an absolute scale, while the 
adjusted replicator dynamics requires only a 
ratio scale.
	 Suppose that we are not concerned with 
the speed at which trajectories are traversed. 
Then f can be multiplied by a positive real 
number without having an inadmissible 
numerical representation of fitness. Fitness 
is being measured on a ratio scale for both 
dynamics. As we have just seen, in this situa-
tion all admissible numerical representations 
leave the trajectories of the system invariant. 
This has important consequences. Not only 
does a change of scale not affect the num-
ber, location, and stability properties of rest 
points or other regions of state space (such 
as periodic orbits), but it is also true that the 

A B

A 1,1 0,0

B 0,0 1,1

(a) A simple two strategy coordination game

(b) An illustration of the trajectories and speed for the one-population 
replicator dynamics. The x-axis represents the proportion of the 
population playing A. The y-axis represents the rate of change of the 
population.

Figure 1: An example of the change in speed of evolution as fitness is 
multiplied by a positive constant a > 1.
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basins of attraction, and thus their sizes, are 
preserved. Statements such as claiming that 
one basin of attraction is larger than another 
are thus meaningful for ratio-scaled fitness.
	 For fitness measured on a ratio scale, then, 
the trajectories of the replicator dynamics are 
invariant under admissible scale transforma-
tions up to a change of time scale, and the 
adjusted replicator dynamics is fully invari-
ant under admissible scale transformations. 
If f is an interval scale, the trajectories of the 
replicator dynamics are again invariant under 
admissible scale transformations. This fol-
lows since

xi (a fi (x) + b) – ∑j xj (a fj (x) – b) = a(fi (x) – f̄ (x)),
so that the same trajectories are traversed at 
a different velocity after a change of scale. 
Hence, for the invariance properties of the 
replicator dynamics it doesn’t matter if the 
fitness function is a ratio scale or an interval 

scale. For the adjusted replicator dynamics, 
however, it does. Consider the change of scale 
to f ' = afi + b, where a > 0. Then (2) becomes

ẋi =
xi ( fi' (x) – f̄ '(x))

=
axi ( fi (x) – f̄ (x))

f̄ '(x) af̄ (x) + b

=
xi ( fi (x) – f̄ (x))

f̄ (x) + ba

The term b
a in the denominator can change 

the evolutionary dynamics significantly. If 
b is negative and is of significantly larger 
magnitude than a it may even happen that

f̄ (x) + ba 

is negative for some x, in which case the 
scale transformation would partially invert 
the direction of vectors in the vector field.6 
Changes in b can radically alter the dynamic 
trajectories and rest points (see Figure 2).

Figure 2: Illustration of the sensitivity of the adjusted replicator dynamics to the addition of a negative constant 
to all fitness values.

(a) Coordination game with a = 1 and b = 0

(c) Coordination game with a = 1 and b = –0.75

(b) Coordination game with a = 1 and b = –0.4

(d) Coord. game with a = 1 and b = –1.25
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	 This result also qualifies the well-known 
fact that the orbits of the replicator dynamics 
and the adjusted replicator dynamics are the 
same, up to a change of time scale (Cressman 
2003, §2.1). We see that this is true only if 
fitness is measured on an absolute or on a 
ratio scale.
	 This also shows how complicated the re-
lationship is between the two dynamics. If 
we want to preserve both the trajectories and 
the speed with which they are traversed, the 
adjusted replicator dynamics is more permis-
sive—it requires less from our fitness mea-
surements than does the replicator dynamics. 
On the other hand, if we only care about the 
trajectories, but not the speed of traversal, 
the adjusted dynamics is less permissive—it 
requires more from our fitness measurements 
relative to the replicator dynamics.
	 Ordinal scales have weaker invariance 
properties since they are associated with 
a larger class of transformations. This is 
reflected in evolutionary theory. Let’s look 
at the concept of evolutionary stability first. 
Recall that in the definition of evolutionary 
stability, only the ordering of fitness plays a 
role. But it is not quite correct that it is enough 
to measure fitnesses on an ordinal scale. As 
long as we only compare the fitnesses of 
pure strategies, it is true that an ordinal scale 
is sufficient. But as soon as we introduce 
mixed strategies (which is unavoidable in 
evolution), we need to be able to calculate 
expected payoffs. This requires fitness to be 
measurable on at least an interval scale.
	 For the same reasons there seem to be no 
interesting invariance properties of the rep-
licator dynamics and the adjusted replicator 
dynamics for ordinal scales. Nash equilib-
ria, and thus the rest points of both types of 
replicator dynamics, are not invariant under 
admissible scale transformations. Also, sta-
bility properties of rest points can change 
due to the arbitrariness of expected payoff 
calculations in the context of ordinal scales. 
These conclusions are slightly different when 

fitness is frequency-independent, that is when 
the fitness of a strategy does not depend on the 
population composition. In this case, ordinal 
scales do preserve rest points and their stabil-
ity properties, though the trajectories and the 
speed at which they are traversed can change.
	 Consider for example the two games pic-
tured in figure 3.7 In this example, an ordinal-
rank-preserving transformation affects the 
stability of a mixed rest point while also 
completely removing another. In this example 
the point (1/2, 1/2, 0) is a Nash equilibrium in 
the original game which is an asymptotically 
stable rest point in the replicator dynamics. 
After transformation, that point remains a rest 
point in the replicator dynamics, but it is no 
longer a Nash equilibrium and is therefore 
unstable.
	 Even if we restrict ourselves to situations 
where the monotonic transformation pre-
serves the location of Nash equilibria, we can 
change their stability properties. Consider 
the two variations of the classic game Rock-
Paper-Scissors pictured in Figure 4. Each 
game is a monotonic transformation of the 
other and both games feature unique Nash 
equilibria at (1/3, 1/3, 1/3). However, in the 
left-hand game, the equilibrium is unstable 
and in the right-hand game the equilibrium is 
asymptotically stable and a global attractor.
	 If there are good reasons to restrict the 
class of ordinal transformations in certain 
ways, there are more interesting invariances. 
Consider game dynamics of the form

ẋi  = xi gi (x),

where the functions gi are continuously 
differentiable and generate a dynamics in 
the simplex. The function gi is called the 
growth rate of i. Consider the class of all 
transformations that preserve the order of 
growth rates. This leads to the class of payoff 
monotonic dynamics (Hofbauer and Sigmund 
1998, §8.2). Every payoff monotone dynam-
ics has the same rest points as the replicator 
dynamics. Payoff monotone dynamics share 
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A B C

A 0 10 0

B 10 0 0

C 7 2 1

A B C

A 0 10 0

B 10 0 0

C 7 6 1

(a) A three-strategy game with a stable rest point at 
(1/2, 1/2, 0)

(b) A three-strategy game which is an ordinal transfor-
mation of the game to the left, but with an unstable rest 
point at (1/2, 1/2, 0)

Figure 3: An example of two games where one is an ordinal transformation of the other but where the stability 
properties of a rest point are altered through changing the Nash equilibria.

(c) An illustration of the replicator dynamics for the 
game (a)

(d) An illustration of the replicator dynamics for the 
game (b)

R P S

R 0.25 –1 1

P 1 0.25 –1

S –1 1 0.25

R P S

R –0.25 –1 1

P 1 –0.25 –1

S –1 1 –0.25

(a) A version of Rock-Paper-Scissors where the mixed 
strategy Nash equilibrium is unstable

(b) A version of Rock-Paper-Scissors where the mixed 
strategy Nash equilibrium is asymptotically stable and 
a global attractor

Figure 4: An example of two games where one is an ordinal transformation of the other but where the stability 
properties of a Nash equilibrium are altered.

(c) An illustration of the replicator dynamics for the 
game (a)

(d) An illustration of the replicator dynamics for the 
game (b)
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many stability properties of the replicator 
dynamics, like strict Nash equilibria being 
asymptotically stable.
	 Importantly, however, payoff monotone 
dynamics don’t all generate the same trajec-
tories. Hence basins of attraction can change 
under admissible changes of the dynamics. 
This can significantly impact the conclusions 
that we draw from a model. A rest point with a 
large basin of attraction is usually interpreted 
as being significant since it attracts a large set 
of initial conditions; if initial conditions are 
chosen at random, such a rest point will be ob-
served more often than others with a smaller 
basin of attraction. If the underlying fitness 
function gives rise to a payoff monotone dy-
namics, no such conclusions are justified.
	 In two population models things are a bit 
different. Consider ratio scales. Changing the 
scale in population one by a factor of a1 > 0 
and in population two by a factor of a2 > 0 
results in the system

ẋi = a1 xi ( fi (y) – f̄ (x,y)),
ẏj = a2 yj ( fj (x) – f̄ (y,x)),

	 Since the two populations interact with 
each other, this does not just lead to a change 
in time scale of the overall dynamics. Con-
sider a two-population, two-strategy game. 
In this case, the two-population replicator 
dynamics (3) is two-dimensional:

ẋ = x ( f (y) – f̄ (x,y)),
ẏ = y ( f (x) – f̄ (y,x)),

	 The direction and rate of change is deter-
mined by the ratio ẋ/ẏ. This ratio depends on 
the factors a1, a2, since in general

x ( f (y) – f̄ (x,y))
≠

a1x ( f (y) – f̄ (x,y))
y ( f (x) – f̄ (y,x)) a2y ( f (x) – f̄ (y,x))

	 As a consequence, a change of ratio scale 
in the two population replicator dynamics can 
change the trajectories of the system.8

	 Thus, basins of attraction are not invariant 
under those changes. However, close to rest 
points the effects of a1, a2, diminish, and so 

the stability of rest points will not be affected. 
For interval scales the same is true, since 
the additive factors in the change of scale 
cancel out when taking the payoff difference 
between the expected fitness of a strategy and 
the average fitness in the population.
	 As an example, consider the two versions 
of the “Chain-Store game” pictured in Figure 
5. Each game is constructed by multiplying 
the row players fitness by a constant (either 
0.1 or 10). This game features one asymptoti-
cally stable Nash equilibrium and a connected 
set of Nash equilibria. As can be seen by the 
phase portraits, the basins of attraction are 
substantially altered by multiplying the row 
player’s fitness by a positive constant.
	 In sum, then, for ratio scales and interval 
scales only certain qualitative features of the 
dynamics remain invariant under the two-
population replicator dynamics. The same 
is not true for the two-population adjusted 
replicator dynamics9 in the case of ratio 
scales, since the factors a1, a2, cancel out in 
each population. For interval scales, the two-
population adjusted replicator dynamics can 
exhibit a wide variety of behaviors depending 
on the choice of scale.
	 This result is especially concerning for 
some uses of the two population replicator 
dynamics. While the joint outcomes may be 
on an interval scale, the individual outcomes 
of each population cannot be measured using 
scales that are independent of one another. 
When the two-population replicator dynam-
ics is used to model two groups in a single 
species, this may be appropriate. If, however, 
the two populations are two distinct species 
one might worry about the appropriateness 
of this assumption.

5. Inclusive Fitness
	 A type of transformation that does not cor-
respond neatly to a category of scale type is 
the transformation of personal, or neighbor-
modulated, fitness into inclusive fitness. To 
calculate neighbor-modulated fitness one 
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that a non-altruist interacts with an altruist—
these capture the probability that each type 
receives a benefit. Further, f0 is the baseline 
fitness that an organism receives. By contrast, 
the inclusive fitness of these traits (using w 
now to distinguish from neighbor-modulated 
fitness) are:

wa = f0 + [P(A–i | Ai) – P(A–i | Ni)] ∙ b − c	 (7)

wn = f0	 (8)

where P(A–i | Ai) – P(A–i | Ni) is the “related-
ness,” R, between two organisms.
	 The transformation first strips all compo-
nents which are due to the individuals’ social 
environment (in this case, the terms consist-
ing of b and the probability of receiving it) 
then augments each fitness calculation by the 
relatedness-weighted benefit or harm the indi-
vidual causes to their social partners’ fitness 
(R · B for the altruists, who cause a benefit, 
and 0 for the non-altruists who do not affect 
their social partner’s fitness). In the end, this 

L R

U (0,1) (0,1)

D (–1,–1) (1,0)

L R

U (0,1) (0,1)

D (–0.1,–1) (0.1,0)

(a) The Chain Store Game (b) The Chain Store Game where row’s payoffs have 
been multiplied by 0.1

Figure 5: An example of how multiplication of one players payoffs by a positive constant alters trajectories and 
the relative sizes of basins of attraction for a game. For illustration, the trajectories plotted in (c) and (d) start at 
identical points.

(c) An illustration of the two population replicator 
dynamics for the game (a)

(d) An illustration of the two population replicator 
dynamics for the game (b)

simply sums up all the fitness effects an or-
ganism is expected to have from their social 
interactions (relevant to the trait of interest). 
Then, to arrive at inclusive fitness, rather 
than multiplying or adding a constant to a 
measurement of fitness, one subtracts and 
adds fitness effects in a more complicated 
way (Hamilton 1964; Frank 2013).
	 We can look at a simple example to see 
how this works. Inclusive fitness calculations 
are often used to determine when altruistic 
traits are favored by selection. These are traits 
where there is some cost, c, incurred by an 
organism and some benefit, b, conferred to 
another organism. The neighbor-modulated 
fitness of altruism and non-altruism are:

fa = f0 + P(A–i | Ai) ∙ b − c	 (5)

fn = f0 + P(A–i | Ni) ∙ b	 (6)

where P(A–i | Ai) is the conditional probability 
that an altruist interacts with another altruist 
and P(A–i | Ni) is the conditional probability 
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essentially amounts to subtracting the term 
“P(A–i | Ni) · b” from both neighbor-modulated 
fitness calculations.
	 This changes fitness in a non-constant 
way—the exact effect will depend on the 
population composition, as P(A–i | Ni) will 
generally change with the number of altru-
ists—but in certain cases the evolutionary 
trajectories will be invariant under this sort of 
transformation. Under certain assumptions, 
namely actor’s control and weak additiv-
ity,10 this transformation can be shown to 
give the same prediction for the direction of 
evolutionary change as the original neighbor-
modulated fitness payoffs (Queller 1992; 
Birch 2016).11 Thus, the location of rest points 
and their stability properties are preserved. 
In the context of the replicator dynamics 
with two possible traits, it has been proven 
further that (given the above assumptions) 
both the solution trajectories and the speed at 
which they are traversed are unaltered by this 
transformation, when relatedness is constant 
(Van Veelen 2011) or when there are pairwise 
interactions (Rubin 2018).
	 This is somewhat surprising because 
neighbor-modulated fitness and inclusive 
fitness are not positive affine transforma-
tions of one another, but they are monotonic 
transformations of one another. This might 
lead one to think of neighbor-modulated and 
inclusive fitness are on the same ordinal, but 
not interval, scale. However, it turns out that 
more of the structure of the replicator dynam-
ics is preserved than with an ordinal scale. 
In particular, when it comes to the replicator 
dynamics, it looks more like an interval or 
even an absolute scale.
	 Consider a simple example first discussed 
by Skyrms (1994). Imagine a population 
where two individuals are paired to interact 
at random. If an altruist is initially paired with 
an altruist, the two interact. Any individual 
(altruist or non-altruist) who initially pairs 
with a non-altruist can refuse and seek an-
other pairing. They are then paired again, but 

they cannot refuse the second pairing. This 
introduces a certain level of correlation. But 
the exact values of P(A–i | Ai) and P(A–i | Ni) 
will depend on the proportion of altruists in 
the population. In particular:

P(A–i | Ai) = p + 
(p – p2) (1 – p)

1 – p2

P(A–i | Ni) =
p – p2

1 – p2

With this simple example, it is clear that 
inclusive fitness and neighbor-modulated 
fitness are not equivalent. Figure 6 shows 
how the fitness of altruists and non-altruists 
compare for various population proportions.

(b) Neighbor-modulated fitness

Figure 6: An example of how neighbor-modulated and 
inclusive fitness change as the population composition 
changes. In this example, f0 = 0, b = 9, and c = 3. The 
solid line represents the fitness of the altruistic type 
and the dashed line represents the fitness of the non-
altruistic type. The x-axis is the proportion of altruists 
in the population, p.

(a) Inclusive fitness
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	 Despite the fact that the scales are ob-
viously different from one another, they 
nonetheless generate identical evolutionary 
histories in the replicator dynamics (see 
figure 7).12 This is because the difference 
between altruists’ and non-altruists’ fitness 
is the same regardless of whether one uses 
neighbor-modulated or inclusive fitness for 
all population compositions. So, even though 
we are performing a transformation which is 
inadmissible when using an absolute scale, 
evolutionary predictions based on the rep-
licator dynamics have the same invariance 
properties as when fitness is measured using 
an absolute scale.
	 Additionally, since inclusive fitness enters 
into the dynamics in the same way as any 
other calculation of fitness (namely, it is used 
to calculate fitness of each strategy and the 
average fitness of the population, which are 
then plugged into the dynamical equations), 
whatever invariance there is in the dynamics, 
this invariance exists when fitness is thought 
of as inclusive fitness. For instance, with the 
replicator dynamics, one can add or multi-
ply inclusive fitness by any number without 
changing the solution trajectories. Further, the 
choice of f0 (or whether to include it at all) is 
irrelevant to the evolutionary trajectories as 
one can add any constant without changing 
the solution trajectories or the speed at which 
they are traversed. If one is using the adjusted 

replicator dynamics, on the other hand, the 
background fitness can have important effects 
on the evolutionary trajectories.

6. Conclusion
	 Let’s return to our main question: Given 
that we wish to preserve certain features of an 
evolutionary dynamics, what constraints does 
this put on the underlying fitness function?
	 Our results entail the following. Consider 
the standard one population replicator dy-
namics. In case we wish to preserve both the 
trajectories and the time scale, fitness must 
be measured on an absolute scale. If we wish 
to preserve the trajectories but not the time 
scale, it is sufficient that fitness be measured 
on a ratio or an interval scale. Ordinal scales 
don’t give rise to any interesting invariances, 
unless there is a way to restrict admissible 
scales to those that respect the ordering given 
by expected fitness. In the two-population 
replicator dynamics the invariance of tra-
jectories requires an absolute fitness scale. 
For ratio and interval scales, trajectories and 
basins of attraction may change.
	 The situation is different in the adjusted 
replicator dynamics. If we wish to preserve 
both the trajectories and the time scale of 
the dynamics, it is enough that fitness be 
measured on a ratio scale. On the other hand, 
interval scales don’t lead to any interesting 
invariance. They may even lead to changes 
of basic qualitative features of the dynamics, 
such as the direction of the vector field.
	 Not every transformation biologists’ use 
in describing evolutionary change can be 
captured by one of these measurement scales. 
In the case of inclusive fitness, described in 
section 5, one transforms personal fitness 
functions in a non-constant way. Yet, in cer-
tain cases, this can lead to invariances in the 
evolutionary dynamics. What assumptions 
are needed to prove these invariances (and 
how restrictive they are) depends on whether 
one cares only about the location and stabil-
ity of rest points or if one cares additionally 

Figure 7: The replicator dynamics for both inclusive 
fitness and neighbor-modulated fitness in the example 
where f0 = 0, b = 9, and c = 3.
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about the speed at which the trajectories are 
traversed.
	 Many applications of evolutionary theory 
use an absolute measure of fitness, namely the 
number of offspring or the expected number 
of offspring. This leads of course to very 
strong invariance properties. The disadvan-
tage is that just counting offspring or calculat-
ing the expected number of offspring is a very 
crude concept of fitness in situations in which 
we wish to determine the contribution of spe-
cific traits or strategies to fitness. For instance, 
Wagner (2010) has proposed a measure of 
fitness that captures the competitive ability of 
traits. His approach is based on Luce’s theory 
of choice probabilities (Luce 1959). Wagner 
develops an analogous theory for evolution, 
where probabilities reflect a trait’s propensity 
to out-compete other traits. He proves that 
under certain conditions this gives rise to a 
ratio scale measure of fitness. As we have 
seen, this is associated with strong invari-
ance properties in one-population replicator 

dynamic models, and preserves qualitative 
features in two-population models.
	 In cultural evolution one usually does not 
have access to measures of fitness with strong 
scale invariance properties. Applications in 
economics usually assume that fitness is a 
standard utility function, hence an interval 
scale. In these cases, the replicator dynam-
ics has reasonable invariance properties. In 
applications of evolutionary game theory 
outside of economics it is often not so clear 
what fitness is. The dangerous case is that 
fitness is only thought of as an ordering of 
outcomes. As mentioned above, without any 
special restrictions this does not lead to any 
interesting conclusions regarding the signifi-
cance of certain population states.

University of California, Irvine

University of Notre Dame

Carnegie Mellon University

NOTES

1.	 For a general discussion of measurement theory in biology see Houle et al. (2011). For measurement 
theory more generally see Krantz et al. (1971/2007), Suppes et al. (1989; 2007), Luce et al. (1990/2007), 
and Hand (2010).

2.	 For discussions see Chang (2004) and van Fraassen (2008). See Baccelli (forthcoming) for an 
analysis of the role of the representational theory.

3.	 The role of invariance in discussions of meaningfulness is investigated in Narens (2002). Mitteroecker 
and Huttegger (2009) and Huttegger and Mitteroecker (2011) discuss invariance and meaningfulness 
in a biological context. See also Houle et al. (2011).

4.	 Although the conclusions for the discrete time version will be different.

5.	 Multiplication by a negative real number would leave the trajectories intact, but switch their direc-
tion.

6.	 The adjusted replicator dynamics are typically introduced with the caveat that all payoffs should 
be non-negative and average payoffs should be positive (e.g., Sandholm 2010, p. 156). Thanks to an 
anonymous reviewer for this point.

7.	 The simplex for Figures 3, 4, and 5 were created with the Dynamo software package (Sandholm 
2012).

8.	 See the work of Bergstrom and Lachmann (2003), and Bruner (2019), and O’Connor and Bruner 
(2019).
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9.	 For that dynamics, just divide the right-hand sides of (3) by the respective average population 
payoffs.

10.	Roughly, these two conditions correspond to requiring that the fitness effects on the recipient do 
not depend on the recipient’s genotype/phenotype and fitness effects from all an organism’s social 
interactions can simply be added up (Birch 2016).

11.	These proofs make use of the Price equation, not the continuous time replicator dynamics, but the 
two dynamics are equivalent when there are a finite number of traits (Rubin 2018).

12.	For a discussion see Rubin (2018).
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