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ABSTRACT

Inclusive fitness has been under intense scrutiny in recent years, with many critics claim-

ing the framework leads to incorrect predictions. We consider one particularly influential

heuristic for estimating inclusive fitness in the context of the very case that motivated

reliance on it to begin with: the Sir Philip Sidney signalling game played with relatives.

Using a neighbour-modulated fitness model, we show when and why this heuristic is

problematic. We argue that reliance on the heuristic rests on a misunderstanding of what

it means for two organisms to be related and perpetuates a mischaracterization of the role

of the ‘relatedness’ parameter in inclusive fitness.
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1 Introduction

Inclusive fitness has been under intense debate recently, following an article by

(Nowak et al. [2010]). Among the many criticisms levied against the inclusive

fitness framework, some have claimed the framework yields incorrect predic-

tions (van Veelen [2009]; Nowak et al. [2010], [2011]). One response to criti-

cisms of the inclusive fitness framework is that the authors confuse the

framework as a whole with models of particular cases (Abbot et al. [2011]).

However, it is more than just particular models that should give cause for

concern. As we will show, one particularly influential method for estimating

inclusive fitness is unreliable in that it yields predictions that are drastically

different from explicit fitness calculations.
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Maynard Smith ([1991]) famously used a heuristic method of calculating

inclusive fitness to better explain the existence of honest communication

among relatives with conflicting interests. Conventional wisdom holds that

honest communication is possible when there are significant costs associated

with signalling.1 Unfortunately, this formulation of the so-called handicap

principle has a rather peculiar status, for while it plays a central role in

animal communication theory, there is surprisingly little empirical evidence

that the high costs needed to sustain communication exist in nature (McCarty

[1996]; Bachman and Chappell [1998]; Zollman [2013]). Maynard Smith’s al-

ternative way of resolving this puzzle is to notice that when senders and re-

ceivers are related, the conflict of interest preventing honest communication

can be minimized. We show that the way Maynard Smith ([1991]) incorpor-

ates relatedness into inclusive fitness calculations, which has become the com-

monly used method in the literature (Johnstone and Grafen [1992]; Godfray

[1995]; Bergstrom and Lachmann [1997]; Johnstone [1998]; Brilot and

Johnstone [2003]; Huttegger and Zollman [2010]), misrepresents the biological

reality of many of these interactions among kin.

We argue that reliance on this heuristic both rests upon and reinforces a

misunderstanding about what it means for two organisms to be related. This is

particularly significant since inclusive fitness as a framework for studying

evolution has generated a variety of insights and is seen as indispensable by

evolutionary theorists and field biologists (Queller [1992]; Abbot et al. [2011];

West and Gardner [2013]). Given its central status in evolutionary theory and

the recent attention paid to debating its utility, it is of the utmost importance

that techniques used within the inclusive fitness framework are methodologic-

ally and conceptually sound. We develop a model that correctly represents

relatedness and show how the heuristic leads to different conclusions about

the possibility of communication in the very case that motivated reliance on

the heuristic to begin with.

Our article will proceed as follows: We first discuss Maynard Smith’s

heuristic approach to measuring inclusive fitness.2 In Section 3, we introduce

the Sir Philip Sidney game. We then develop our own model that uses so-called

neighbour-modulated fitness in Section 4. The task of Section 5 will be dis-

cussing our predictions under this new model as well as comparing our results

to previous work on the Sir Philip Sidney game. Section 6 concludes.

1 For an overview of animal communications literature, see (Maynard Smith and Harper [2004];

Searcy and Nowicki [2005]).
2 This heuristic approach is not limited to Maynard Smith and has also been referred to as a

‘simple-weighted-sum’ (Grafen [1982]). Since we are focusing on the animal communications

literature, we will refer to it as Maynard Smith’s heuristic.
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2 Heuristic Inclusive Fitness

Maynard Smith ([1991]) presents a heuristic for exploring interactions be-

tween relatives. In short, he calculates the inclusive fitness of an organism

by adding its own payoff and its relative’s payoff, weighted by a relatedness

parameter, k. Critics and supporters of inclusive fitness alike have argued that

this is an incorrect definition (Grafen [1982], [1984]; Skyrms [2002]; Nowak

et al. [2010]; Okasha and Martens [2016]; Birch [2013], [2016]). Despite recog-

nition that this calculation is incorrect, it is often viewed as a useful heuristic

for estimating the inclusive fitness of traits. One intuitive argument for why

this heuristic should give adequate predictions is this: if we are interested in

tracking gene frequencies, adding the relatedness-weighted payoff of a relative

to the focal organism’s payoff means that the focal organism’s genes will be

passed on more often. In other words, it captures the fact that an organism in

some sense cares about the payoff, or reproductive success, of its relatives and

this is exactly the phenomenon that the relatedness parameter in inclusive

fitness is supposed to capture.

However, despite its intuitive appeal, Maynard Smith’s way of accounting

for the alignment of interests between relatives is not accurate. By just adding

the (relatedness-weighted) fitness of an organism’s social partner to its own,

fitness is (at least partially) double counted. For example, say we have two

relatives, organism A and organism B, which interact and both have trait j.

Under Maynard Smith’s heuristic, when we calculate the fitness of trait j we

count A’s fitness twice: once when we consider A’s contribution to the fitness

of the trait and again (at least partially, depending on the value of k) when we

take into account B’s contribution to the fitness of the trait. We similarly

double count B’s fitness.

The correct way to calculate inclusive fitness tends to be more mathemat-

ically and conceptually complex. It can be thought of as first stripping an

organism’s fitness of all the fitness effects of others, in order to avoid

double counting these effects, and then adding the fitness effects the organism

confers on its relatives (Hamilton [1964]). Thus we can think of inclusive

fitness as measuring the offspring caused by a particular organism (weighted

by a relatedness parameter), in contrast to the more standard way of calculat-

ing fitness, neighbour-modulated fitness, which measures the offspring the

focal organism actually has. In other words, neighbour-modulated and inclu-

sive fitness calculations provide alternative ways of partitioning the causal

structure of social interactions (Frank [2013]). In order to understand this

contrast, it is helpful to compare how both types of fitness are calculated.

Roughly, the neighbour-modulated fitness approach considers the number

of offspring an organism is expected to have due to some social interaction.

When i interacts with another organism j, its fitness is affected by its own
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action—call this fitness effect sii—and by the action of the other organism—

call this fitness effect sji. The neighbour-modulated fitness of organism i for an

interaction of interest is then calculated as follows:

fi ¼ sii þ sji:

Inclusive fitness provides an alternative way of accounting for fitness effects

from social interactions (Hamilton [1970]). When i interacts with another or-

ganism, it affects its own fitness by some amount (sii), but it also affects the

fitness the other organism by some amount (sij). Further, i and j may be more

or less related and we can describe this relatedness with a parameter, k. We can

then calculate the inclusive fitness of an organism from an interaction of

interest as follows:

fi ¼ sii þ k � sij :

Importantly, inclusive fitness is not calculated by counting the number of

offspring an organism has then adding all the offspring its relatives have,

weighted by relatedness, as it is in Maynard Smith’s heuristic.

The inclusive fitness framework might initially seem counter-intuitive, so it

is helpful to start with a basic observation: in general, a trait will increase in

frequency when organisms with the trait have more offspring than the average

organism in the population. To determine whether a trait of interest will in-

crease in frequency, we want to determine the number of offspring organisms

with that trait will have. Inclusive fitness gives us this information by telling us

how many offspring are caused by an organism and how likely it is that these

offspring are had by an organism with the trait of interest. In this general

sense, k can be thought of as a measure of how likely it is that i and its social

partner j share the trait of interest, relative to the rest of the population. The

relatedness of a focal organism to its social partner is the probability the social

partner has a trait given the focal organism does, minus the probability the

social partner has the trait given the focal organism does not:

k ¼ PðTj jTiÞ � PðTj jNiÞ:

Why this is the correct measure of relatedness is discussed by Skyrms ([2002])

and van Veelen ([2009]).3

This definition of relatedness captures the fact that in interactions among

kin, there is correlation between traits: related organisms tend to have the

same trait, or employ the same strategy in the game.

As noted, despite the fact that Maynard Smith’s method for estimating

inclusive fitness is clearly incorrect, this heuristic way of accounting for

3 The equivalence between this measure of relatedness and more common measures derived from

the Price equation is discussed in (Rubin [2018]), and their equivalence with the measure of of

relatedness employed by Grafen ([1979]) is discussed by Marshall ([2015]).
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relatedness has been influential and has been employed in a variety of different

strategic contexts (Johnstone and Grafen [1992]; Johnstone [1998]; Nowak

[2006]; Taylor and Nowak [2007]; Archetti [2009a], [2009b]). In particular,

this heuristic is routinely used in discussions of one of the central games in

the literature on the evolution of communication, the Sir Philip Sidney game

(see, for instance, the massive literature surrounding the Sir Philip Sidney

game summarized in Maynard Smith and Harper [2004] and Searcy and

Nowicki [2005]). In fact, the heuristic is often seen as preferable to explicit

calculation of inclusive fitness. When payoffs are additive—that is, when the

causal effects of an organism on its social partner’s fitness are the same irre-

spective of the type of its social partner (allowing us to just sum all these fitness

effects up to determine an organism’s fitness)—the heuristic correctly identi-

fies the Nash equilibrium of a game. Further, the heuristic is easy to generalize

to games where payoffs are not additive, like the Sir Philip Sidney game. It is

difficult to use the correct calculation of inclusive fitness this type of game

because it is often unclear what fitness effects an organism is causally respon-

sible for (Okasha and Martens [2016]). Thus, the heuristic is thought to give us

an idea of the evolutionary outcomes we should expect in these more compli-

cated models, despite the fact that it is known to have a problem of double

counting. That is, it is commonly used in more complex evolutionary models

both because it is easier to generalize and because it captures the important

feature of relatedness as generating a degree of common interest between

interacting organisms.

However, this common use of the heuristic rests upon and perpetuates the

incorrect notion that relatedness represents the degree of common interest. For

instance, in discussing the evolution of honest communication, Zollman ([2013])

considers the literature on the evolution of biological altruism, where it is well-

known that correlations between traits can allow altruism to evolve, and

presents correlated interactions as an alternative to inclusive fitness theory. In

discussing situations where honest communication can be seen as a type of

altruistic action (because it is costly for the honest organism, but beneficial

for their relative), Zollman claims that ‘the most popular solution to the biolo-

gical altruism problem, inclusive fitness theory, cannot help in this context, since

parent–offspring conflicts arise despite the high relatedness between parents and

offspring’ (Zollman [2013], p. 130). He instead proposes that we look to solu-

tions using correlation between types and notes that ‘Relatedness might, beyond

inclusive fitness, introduce additional correlation’ (Zollman [2013], p. 131).

This loses sight of the fact that generating common interest is merely a

feature of high relatedness.4 This can be a useful way of thinking about

4 Although if one is interested in modelling the evolution of honest communication when the

interacting organisms are not relatives but there is some degree of common interest for some

other reason, models based on the heuristic could be useful.
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relatedness, but not when it obscures the fact that relatedness is fundamentally

a measure of correlation between types. When using the relatedness calcula-

tion above, inclusive fitness models neatly incorporate correlations between

types into evolutionary predictions; the contrast between inclusive fitness and

correlation as solutions to the problem of altruism only makes sense when

considering the heuristic rather than explicit inclusive fitness calculations.

Reliance on the heuristic both rests upon and perpetuates this misunderstand-

ing of the nature of relatedness and its role in inclusive fitness.

We will show why this heuristic cannot capture correlations between types.

We deviate from the literature and develop a model that uses neighbour-

modulated fitness in order to examine the evolutionary predictions when the

correlation inherent in parent–offspring relationships is incorporated. This

article will argue against conclusions drawn using Maynard Smith’s heuristic

in the very case that motivated reliance on the heuristic within the animal

communications literature in the first place: the Sir Philip Sidney game. To

be clear, this article will argue against a particularly influential method for

estimating inclusive fitness, not against the inclusive fitness framework as a

whole.

This article, in part, echoes a debate that occurred the late 1970s over the

use of this heuristic in what’s called the Hawk–Dove game, which is used as a

model of animals fighting over resources.5 The prediction for this game, when

not played with relatives, is that the population will be composed of a mixture

of Hawks and Doves at equilibrium (what mixture this will be depends on the

particular payoffs of the game). Maynard Smith ([1978]) argued that we could

use the heuristic method of calculating the inclusive fitness of organisms to

predict the evolutionary outcome in the Hawk–Dove game played among

relatives. Grafen ([1979]) showed that whether or not this works depends on

how the mixture of strategies in the population arises: when each organism is

either hawkish or dovish, and there is some mixture of these two pure strate-

gies in the population, the heuristic gives the wrong answer, but when all the

organisms in the population are playing mixed strategies (that is, alternating

between acting hawkish or dovish with some probability) the heuristic

‘amazingly’ gives the right answer. The response by Hines and Maynard

Smith ([1979]) was to grant that Grafen is right, but then show that for

games with these sort of mixed strategy equilibria, the heuristic lets you cal-

culate necessary, but not sufficient, conditions for something to be an

equilibrium.

5 In this game ‘hawk’ refers to an aggressive animal that fights for a resource and ‘dove’ refers to

an animal that is unwilling to fight. A hawk then always gets the contested resource when

encountering a dove, but against another hawk will split the resource and pay a cost from

fighting. A dove will always surrender the resource to a hawk, but will split the resource

peacefully with another dove.
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Throughout the article, we make claims about the heuristic giving incorrect

predictions and our model giving correct predictions, and it is important to

clarify what exactly these claims should be taken to mean. We do not mean

that our model is the correct description of any real population, or that the

outcomes of models using the heuristic cannot be present in a real biological

population. Our model, like the models we compare it to, is highly idealized

and so is not meant to describe any real population. Instead, we mean that our

model gives the correct predictions for a set of modelling assumptions. (We

include the assumption that interactions are among kin as one of the model-

ling assumptions.) That is, if we think of idealized models as describing non-

actual, fictional populations in which the idealizing assumptions are true (but

that are still similar to real world populations in important respects) (Godfrey-

Smith [2009]), we claim that our model gives the correct predictions for evo-

lution in the fictional population, while models with the heuristic do not.6,7

In order to make our case against the heuristic calculation of inclusive

fitness, we present a model with as many of the same assumptions as possible

(idealizing assumptions and otherwise) as a model using the heuristic (from

Huttegger and Zollman [2010]), but with a correct calculation of fitness. This

is the same strategy employed by Grafen ([1979]) where the conclusion he

reached (and to which Hines and Maynard Smith [1979] agreed) was that

when the predictions of the heuristic do not match those given by an explicit

(non-heuristic, if still idealized) calculations of fitness, the heuristic’s predic-

tions should be considered incorrect.

Grafen ([1979]) observed that Maynard Smith’s heuristic does not capture

important features of the population structure when organisms are interacting

with relatives. Our discussion supports this point and goes beyond the debate

over the Hawk–Dove game in discussing the evolutionary significance of the

equilibria predicted by Maynard Smith’s heuristic. We show a simple evolu-

tionary model involving neighbour-modulated fitness leads to equilibria with

completely different strategies than those predicted by the heuristic.

We further show that the heuristic will identify certain outcomes as over-

whelming likely when—compared to the results of our neighbour-

modulated fitness model—they are very unlikely (or even impossible).

Our discussion is also important because, as noted, Maynard Smith’s heur-

istic has been used to predict outcomes of the Sir Philip Sidney game, which is

6 Or, depending how one thinks about the relationship between a model and its interpretation, we

could say that our model correctly describes the fictional population it attempts to give predic-

tions for, while models using the heuristic claim be talking about one fictional population (where

organisms are relatives and so are likely to have the same traits) but end up giving predictions for

a different population. The heuristic would then be thought of as giving incorrect predictions in

the sense that it gives predictions for the wrong fictional population.
7 Thanks to an anonymous reviewer for helping us to more clearly state the sense in which the

heuristic makes incorrect predictions.
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used for studying the emergence of communication among relatives in situ-

ations where their interests conflict. As Birch ([2013]) notes, ‘This is not to say

that the game does not shed any light on the evolution of signalling; but if it

does, this can only be because the miscalculations of inclusive fitness it

embodies turn out to be harmless’. We provide a new model of the Sir

Philip Sidney game that does not rely on these miscalculations and that in-

corporates correlations between types to show how the predictions differ from

those obtained under the heuristic. We see that some of the previous insights

from Bergstrom and Lachman ([1997]) and Huttegger and Zollman ([2010])

are preserved (for example, that costs are no longer necessary to sustain honest

communication when organisms are highly related), but other conclusions are

not supported.

3 The Sir Philip Sidney Game

As mentioned, the Sir Philip Sidney game is one of the central games in the

animal communications literature, taking up substantial portions of influen-

tial books on the subject (Maynard Smith and Harper [2004]; Searcy and

Nowicki [2005]). This game involves two individuals, a sender and a receiver.

The sender can be one of two types, ‘healthy’ or ‘needy’, and initially only the

sender is aware of its underlying type.8 The sender can select to send a signal or

remain mute. If the sender signals, it bears a cost of c. The receiver then has the

option of transferring resources to the sender. This transfer is costly for the

receiver, but significantly benefits the sender. If the receiver transfers the re-

source, its payoff drops from 1 to 1� d (where d> 0). While both healthy and

needy sender types welcome the transfer, needy types benefit more than

healthy types from the transfer. In the absence of a transfer, needy and healthy

types receive a payoff of 1� a and 1� b, respectively (where a> b). If a trans-

fer is made, then both types of senders attain a payoff of 1. This game is

displayed in extensive form in Figure 1 and the four sender and receiver

strategies are summarized in Table 1.

If sender and receiver are unrelated, honest communication is not possible

since the receiver does best to never transfer resources to her counterpart.

Yet communication is a real possibility if the agents are related. As is com-

monly done, one can introduce a relatedness parameter, k 2 [0, 1], which

allows for communication by partially (if not completely) aligning the inter-

ests of sender and receiver. Following (Maynard Smith [1991]), an individual

in this game would then receive its own payoff plus the relatedness parameter

8 More complicated versions of the Sir Philip Sidney game representing, for instance, the child’s

health as a continuous variable can be found in (Bergstrom and Lachmann [1997]). We stick

with this basic set-up introduced by Maynard Smith ([1991]) and later explored by Huttegger

and Zollman ([2010]).
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times its counterpart’s payoff.9 It is easy to see how the inclusion of this

relatedness parameter aligns the interests of sender and receiver. For example,

in the extreme case where k¼ 1 the parties never disagree with regards to

whether the receiver should donate or not.

There are a number of equilibria in this game. At a so-called separating

equilibrium the receiver correctly infers the sender’s type from its signalling

behaviour. For instance, at (S2, R1) senders only signal if they are needy and

receivers only transfer to needy individuals. An alternative separating equilib-

rium exists in which senders signal only if they are healthy and receivers trans-

fer when they do not receive a signal (S1, R2).10 Note that the only difference

between these two signalling arrangements is whether needy or healthy indi-

viduals signal. In both cases transfers are only made to the needy individual.

Furthermore, for both of these signalling arrangements, substantial signalling

costs are needed to ensure stability for a wide range of parameter values.11

Figure 1. Extensive form of the Sir Philip Sidney game.

Table 1. Sender and receiver strategies

Sender strategy Receiver strategy

S1: Only signal when healthy R1: Transfer only if signal

S2: Only signal when needy R2: Transfer only when no signal

S3: Always signal R3: Always transfer

S4: Never signal R4: Never transfer

9 Some refer to this new game (with payoffs modified to incorporate relatedness) as the Sir Philip

Sidney game, but we will refer to the original game (with unmodified payoffs) as the Sir Philip

Sidney game and to the change in payoff structure as Maynard Smith’s heuristic.
10 This is an equilibrium if a � kd� c� b and (S2, R1) is an equilibrium when a� c + kd � b and

a� d/k� b.
11 For instance, Bergstrom and Lachmann ([1997]) calculate that the minimum cost necessary to

sustain the (S1, R2) equilibrium is c¼ b� kd.
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Such costs are often required in order to ensure that not all sender types have

incentive to signal. The crucial role cost plays in the Sir Philip Sidney game is

consistent with the handicap principle, which, briefly put, contends that hon-

esty in conflict of interest cases typically requires significant costs attached to

signalling behaviour.12

There also exist so-called pooling equilibria in which no information is

transferred from sender to receiver. For instance, the strategy pair ‘never

signal’ and ‘never donate’ is stable when d> k(ma + (1�m)b), where m is

the probability that the sender is needy. Similarly, the pooling equilibrium

in which senders never signal and receivers always donate is stable when

d< k(ma + (1�m)b).

Huttegger and Zollman ([2010]) explore the evolutionary dynamics of the

Sir Philip Sidney game. Through the use of computer simulation they estimate

the basin of attraction (a measure of how likely it is that the population will

evolve to a particular state) for the various equilibria. In particular, they use

the two-population discrete-time replicator dynamics, a standard model of

biological evolution. While details regarding the replicator dynamics are

spelled out in the Appendix, it is worth noting here that the two-population

version of the replicator dynamics employed by Huttegger and Zollman

([2010]) assumes random assortment, meaning senders (children) and receivers

(parents) are randomly paired to play the Sir Philip Sidney game. They in-

corporate the parent–offspring relationship into their analysis solely by the

use of the relatedness parameter, k. In what follows, we will explain how their

results differ from results based on a correct calculation of fitness.

4 Model

We now develop a model of the Sir Philip Sidney game using neighbour-

modulated fitness. While Huttegger and Zollman ([2010]) utilize the

two-population replicator dynamics to study the Sir Philip Sidney game, we

instead develop a class-structured one-population model. The model begins

with an infinite population of ‘parents’, Each parent is endowed with both a

sender and receiver strategy. We refer to this sender–receiver strategy com-

bination as their ‘total strategy’ (TS), and note that there are sixteen possible

total strategies. So, for example, if the TS of an agent is S1–R3, the agent only

12 Some formulations of the handicap principle require that the cost of signalling be different for

different types of senders (that is, that signals be differentially costly). We follow Zollman

([2013]) and work with a broader reading of the handicap principle. On this formulation all

sender types may pay the same cost to signal and honesty is possible due to the fact that some

sender types benefit more than others from the receiver’s response. Note that signal cost is still a

necessary ingredient of the handicap principle, for without signal cost none of the senders will be

disincentivized from signalling, no matter how paltry the benefit.
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signals when healthy if in the sender role and always transfers when in the role

of receiver.

Each round of the model begins with all parents asexually reproducing to

create a single child each. Children inherit the TS of their parent with prob-

ability 1��. With probability �, the child ‘mutates’ with equal probability to

one of the other fifteen TS types. After reproduction, parents and children

play the Sir Philip Sidney game as displayed in Figure 1. Children take the

role of sender while parents inhabit the role of receiver. We then calculate the

average payoff for each TS type (see the Appendix). Payoffs in this framework

should be interpreted as affecting the likelihood an individual survives to the

next time period (and thus can reproduce again). These average payoffs are

then plugged into the discrete-time replicator dynamics to determine the new

composition of the population.13 This completes one generation, or round of

the simulation, and the frequencies of types in the population become the new

frequencies of parents in the next generation.

It is important to note that this model does not capture all the important

biological details of the situation we’ve described. In particular, it assumes

that organisms reproduce asexually when in fact many (or most) organisms of

interest in the animal communications literature reproduce sexually. There are

a few reasons we have elected to set up our model in this fashion. First, our

aim is to contrast the results of our neighbour-modulated fitness model with

previous results produced using Maynard Smith’s heuristic, many of which

are produced for high values of k that cannot be achieved with sexually

reproducing organisms.14

Additionally, we aim to show that different predictions arise due to the way

relatedness is incorporated into the formal analysis. Therefore, our main al-

teration to past work on the Sir Philip Sidney game can be summed up as such:

instead of altering the payoffs of the underlying strategic interaction using a

‘relatedness’ parameter, we incorporate relatedness into our account by

having offspring inherit a strategy from its parent and interact with said

13 Briefly, the replicator dynamics states that the frequency of agents utilizing strategy xi in the next

generation (t + 1) is equal to Fi xi ðtÞ
F

, where Fi is the average payoff for agents using xi, F is the

average payoff for the population as a whole and xi(t) refers to the proportion of agents using xi

in generation t. Note that in our model average payoffs (Fi) are determined by the mutation rate

� as well as the overall composition of the population. More on the ways our model departs

from the standard replicator dynamics model in the Appendix.
14 Much more conflict of interest between relatives can be generated with organisms reproducing

sexually because in these populations relatedness is generally close to 1/2, whereas relatedness

will be close to 1 in the simulations we discuss. The evolutionary predictions for sexually

reproducing populations are more complicated, involving what is called a ‘hybrid equilibrium’

(Huttegger and Zollman [2010]). Since many of Bergstrom and Lachmann’s ([1997]) and

Huttegger and Zollman’s ([2010]) results are regarding population very high relatedness, our

point can be made more clearly with a model involving asexually reproducing organisms. What

happens in the Sir Philip Sidney game when there is sexual reproduction is the subject of future

study.
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parent.15 That is, since previous results were obtained using a model with

asexual reproduction, we also use a model with asexual reproduction in

order to allow a direct comparison between the model when relatedness is

incorrectly incorporated and when relatedness is correctly incorporated. This

fits with our goal, described in Section 2, of comparing models with the same

assumptions, where one model correctly calculates fitness and the other cal-

culated fitness incorrectly via the heuristic, in order to show that the heuristic

provides incorrect predictions for the idealized population it claims to de-

scribe. In addition to asexual reproduction, both models assume: an infinite

population, that payoffs from the game are the sole determinate of evolution-

ary success, there are no sources of noise, evolution proceeds in discrete-

time-steps, and so on.

While there are obvious benefits to setting up the model in this way (namely,

it allows us to better understand the ways in which the heuristic misleads) there

are limitations when it comes to investigating various other claims typically

made in the literature about the evolution of communication among relatives.

For instance, we focus on predictions for high values of relatedness, where

Maynard Smith’s ([1991]) observation was that the conflict of interest prevent-

ing honest communication is attenuated. We do not look at whether signals

must be costly in order for honest signalling to be stable in cases where or-

ganisms have conflicting interests. Generally, these conflicts of interest only

arise in Maynard Smith’s ([1991]) model when relatedness is lower than what

can be reasonably achieved in our model. A more complicated model would be

needed to properly investigate these lower values of relatedness. Thus we

sacrifice a full investigation of the Sir Philip Sidney game for clarity and

ease of comparison between models employing the heuristic and our approach

involving correct calculations of fitness.

5 Results

Our goal in this section is two-fold. First, we explore the implications of the

model discussed in the previous section. We find that for even sizable mutation

rates honest communication is often the only evolutionarily significant out-

come and that signal cost is not necessary to stabilize honesty among highly

related organisms. Second, we contrast our results with previous work relying

on Maynard Smith’s heuristic. Overall, reliance on Maynard Smith’s heuristic

paints a very different picture of when information transfer is possible when

15 Grafen ([1979]) achieves something similar in his model, where an organism will interact with its

own type with probability r and will interact with another type randomly drawn from the

population with probability 1� r. Since there is a small mutation rate in our model, r will

change as the population composition changes and so Grafen’s ([1979]) model would give pre-

dictions that are slightly off. See (Rousset [2002]) for an explanation of why mutation causes

relatedness to change with the population composition.
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compared to our model involving neighbour-modulated fitness, significantly

understating the likelihood of honest communication.

We begin with the extreme case in which the mutation rate, �, is zero. In the

absence of mutations organisms interact with a clone. That is, in the absence

of mutation parents and offspring are always of the same type, meaning

P(TjjTi)¼ 1 and P(TjjNi)¼ 0, corresponding to the case in which k¼ 1.

When organisms only interact with their own type, what determines the evo-

lutionary success of a TS is how well it fares against itself. This means that

selection is not frequency dependent as the fitness of a type is not affected by

other types. It is easy to show that either S1–R2 (only signal when healthy and

transfer only when no signal) or S2–R1 (only signal when needy and transfer

only when signal), corresponding to the two separating equilibria, will go to

fixation for a wide variety of parameters. In general these separating strategies

are favoured by evolution when the costs associated with signalling are small

and the costs associated with making a transfer is significantly greater than the

benefit healthy types receive from a transfer. Which of the two separating

equilibria is reached depends on how likely it is that offspring are needy

(for example, if it is unlikely that offspring are needy, then the population

will reach the equilibirum where offspring only signal when needy, since they

will have to pay the signal cost less often). See the Appendix for the exact

conditions under which information transfer evolves when �¼ 0.

These preliminary results already depart from the findings of Bergstrom and

Lachmann ([1997]). In the model explored in (Bergstrom and Lachmann

[1997]), a pooling arrangement where senders never signal and receivers

simply best respond to the proportion of needy and healthy types will

always be a stable equilibrium, even when the agents are fully related (that

is, when k¼ 1). As mentioned above, on our neighbour-modulated fitness

model, separating is often the only evolutionarily significant arrangement

when agents play with clones (corresponding to the case in which k¼ 1).

Pairs of agents using pooling strategies do on average worse than those

using separating strategies, meaning a population at the pooling arrangement

can be easily invaded by a mutant using a separating strategy.

To see this more clearly, consider the case in which a¼ 31/32, b¼ 9/32,

d¼ 1/2, c¼ 1/100, m¼ 4/10 and the mutation rate is set to zero (correspond-

ing to k¼ 1). Bergstrom and Lachmann ([1997]) and Huttegger and Zollman

([2010]) predict two stable evolutionary outcomes are possible. The familiar

separating equilibrium in which only needy types signal and receivers donate

only upon receipt of a signal is evolutionarily significant, but so is the pooling

equilibrium where senders never signal and receivers always donate. This is an

equilibrium due to the fact that senders do best to not signal so as to avoid any

signalling costs, and the frequency of needy senders is such that receivers

prefer always making a donation to never making a donation.
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Yet on our model this ‘pooling equilibrium’ is not a real possibility for the

above parameters. Recall that when �¼ 0 selection is not frequency depend-

ent so the separating strategy invades because it does best against itself. The

TS S4–R3 (never signal, always transfer) when paired against itself secures an

average payoff of 0.75. The separating strategy S2–R1 yields a payoff of

0.8136 when playing against a clone. Thus a population of individuals utilizing

S4–R3 is not stable for the introduction of a lone agent utilizing S2–R1 will

quickly drive the natives out of the community.

These pooling outcomes are additionally problematic because, under the

replicator dynamic used with Maynard Smith’s heuristic, such outcomes often

have a sizable basin of attraction.16 In other words, not only does the ap-

proach taken by Maynard Smith indicate pooling outcomes are stable, it also

predicts that for large swaths of parameter space these arrangements will be

the likely outcome of an evolutionary process.

To get a better sense of this, consider Figure 2. As is evident, high levels of

information transfer are predicted when relatedness is incorporated into the

model via a class-structured population using neighbour-modulated fitness.

Yet under Maynard Smith’s approach, the pooling equilibrium is attainable

and has a sizable basin of attraction. When there is a 20% chance a sender is

needy, for example, around 85% of simulation runs of the two-population

replicator dynamics result in the pooling equilibrium.

Similarly, Maynard Smith’s heuristic can also overstate the likelihood of

information transfer by incorrectly identifying certain separating arrange-

ments as stable when in fact signalling systems are in fact unstable once fitness

is correctly accounted for in the mathematical model. Consider the numerical

example used above except the cost associated with signalling is now 13/32.

According to the heuristic, for k¼ 1 there exists a separating equilibrium

where senders only signal when needy and receivers only transfer upon receipt

of a signal (S2–R1) as well as a pooling equilibrium where senders never signal

and receivers always transfer resources (S4–R3). Yet when paired against a

clone, the pooling strategy S4–R3 outperforms the separating strategy S2–R1

(payoffs are 0.75 and 0.735, respectively). Thus while Maynard Smith’s inclu-

sive fitness heuristic suggests a separating equilibrium is possible under these

parameters, the neighbour-modulated fitness approach does not allow for any

information transfer.

Thus far we have considered the extreme case in which �¼ 0. When �> 0,

information transfer is still a real possibility. Figure 3 shows the proportion of

16 Outcomes our neighbour-modulated fitness model deems to be evolutionarily significant cannot

be identified by Maynard Smith’s heuristic as unstable when relatedness is 1. For k¼ 1, indi-

viduals only have incentive to change their strategy when doing so increases the combined

payoff of sender and receiver. Thus any arrangement that is out of equilibrium will not

maximize the joint payoff of the two individuals.
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the population one can expect to use the signalling system, as m changes. As

Figure 3 illustrates, honest communication prevails even when mutations

occur relatively frequently (1% of the time).17 Note that for extreme values

of m (the probability a sender is needy) a smaller proportion of the population

uses separating strategies (S1–R2 or S2–R1). This is due to the fact that

pooling strategies fare better when m is close to zero or one. This makes

intuitive sense—in those cases where the vast majority of agents are needy

(healthy), receivers who simply treat senders as though they were needy

(healthy) do relatively well.

Furthermore, our results are interestingly not significantly affected by the

cost associated with signalling. That is to say, as long as the value of c is such

that S2–R1 or S1–R2 still fare better against their own strategy (which they

most often interact with for low mutation rates) than alternative strategies, the

inclusion of minor signalling costs does not significantly reduce the proportion

of the community utilizing signalling strategies. This result holds for even

moderate mutation rates, and the exact relationship between signal cost and

the evolution of separating equilibria is shown in Figure 4. Once again, our

findings depart from results predicated on Maynard Smith’s heuristic.

Huttegger and Zollman ([2010]), for instance, find that increased signal cost

reduces the size of the basin of attraction of the separating equilibrium. This is

Figure 2. Simulation results for Sir Philip Sidney game for various values of m.

Proportion of simulations that ended with populations using a signalling system

for neighbour-modulated fitness model (light) and inclusive fitness model (dark)

for values a¼ 17/32, b¼ 15/32, d¼ 1/2, c¼ 1/100, �¼ 0, and k¼ 1.

17 For extremely high mutation rates, such as 50%, the end state of the population is an even

mixture of all sixteen types. This result holds for more moderate (but still unrealistically high)

mutation rates as well, such as 20%.
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due to the fact that under the replicator dynamics selection is frequency de-

pendent, and an increase in the cost associated with signalling reduces the

likelihood of information transfer in a rather straightforward fashion. In par-

ticular, when receivers are initially unresponsive to the signalling behaviour of

senders, high signal cost heavily penalizes senders utilizing separating strate-

gies, pushing the population toward the pooling equilibrium in which senders

never signal. Note that this explanation depends on the fact that the heuristic

incorporates relatedness into the game via alteration of the payoffs, represent-

ing something like the degree of common interest between organisms, rather

than via correlations between types.

We have explained the results of our model in terms of neighbour-

modulated fitness, but we can still provide some post hoc explanations in

terms of inclusive fitness, even without formulating the exact fitness calcula-

tions for each type. For instance, when a parent always donates a resource it

affects its own fitness by � d and its offspring’s fitness by ma + (1�m)b. We

weight this second term by k, which with a small mutation rate is close to 1.18

This means, when [ma + (1�m)b]k� d> 0 parents will transfer the resource in

the model we’ve provided above. This has the form of Hamilton’s rule, more

commonly seen written as:

BR � C > 0;

Figure 3. Frequency of separating strategies (S1–R2 or S2–R1) in the population

for various values of m for parameters c¼ 0, a¼ 31/32, b¼ 9/32, d¼ 1/2, and

�¼ 0.001, �¼ 0.005, and �¼ 0.01.

18 When the mutation rate is low, organisms tend to interact with their own type: P(TjjTi) is high

and P(TjjNi) is low, so k is high (although the actual value of k will depend on the population

composition (Rousset [2002]).
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where B ¼ ma + (1�m)b is the benefit bestowed on the relative, R¼ k is re-

latedness, and C¼ d is the cost of bestowing the benefit. In other words,

although our model used neighbour-modulated fitness we can still explain

certain results in terms of relatedness having an important causal effect on

the outcomes using the inclusive fitness framework. It is not the use of the

inclusive fitness framework that leads to the difference between our results and

those obtained by Huttegger and Zollman ([2010]), but instead the use of a

heuristic that incorrectly incorporates relatedness.

6 Conclusion

A number of points are in order. First, full information transfer is possible

even when there is no cost associated with signalling.19 In other words, infor-

mation transfer does not require significant signal costs when the parties are

sufficiently related to align their interests. Yet this insight was originally pre-

dicated on a family of models that incorrectly incorporated relatedness into

the game-theoretic model. We have preserved this basic finding while model-

ling parent–offspring interactions in a way that captures the fact that they tend

to have the same phenotype. This is important because it can help explain why

Figure 4. Frequency of separating strategies (S1–R2 or S2–R1) in the population

for various values of c (signal cost) and parameters a¼ 31/32, b¼ 15/32, d¼ 1/2,

m¼ 4/10, and �¼ 0.001 (dark), and �¼ 0.01 (light).

19 Note that previous studies not incorporating relatedness such as (Wagner [2012]; Martinez and

Godfrey-Smith [2016]) have only shown some level of information transfer is possible when

signals are cost-free.
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empirical biologists have often had difficulty registering the existence of sig-

nificant signal costs in nature—cost is simply not needed to stabilize honesty

among kin.

However, while the basic insight arising from these models is correct and

important for the study of animal communication, the predictions they make

are incorrect for many parameter values—they do not match those obtained

using explicit fitness calculations. For instance, in contrast to what Huttegger

and Zollman ([2010]) find, as long as signalling is advantageous cost will not

significantly affect the likelihood of honest communication evolving.

Additionally, as the probability of offspring being needy either increases or

decreases away from 0.5, our model predicts significantly more information

transfer than Huttegger and Zollman ([2010]).

As noted earlier, the inclusive fitness framework is considered by some to be

indispensable to the study of evolution. Yet despite its central position in

evolutionary theory, models using inclusive fitness are not immune to criti-

cism, as evidenced by the recent debate. Our analysis further reveals that even

some commonly used and influential heuristics may be problematic when

thinking about inclusive fitness. Compared to our model that incorporates

correlations between types, predictions made on the basis of this heuristic give

drastically different characterizations of the evolutionary dynamics of the Sir

Philip Sidney game. Thus while such heuristics may conveniently simplify the

task of evolutionary analysis, they should be used with both care and caution.
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Appendix

A1 Details about the Model

Recall that in each round of the model all ‘parents’ produce one child and play

the Sir Philip Sidney game with this child. With probability � the child mu-

tates with equal probability to one of the other fifteen types. To determine how

the population changes over time, we must first calculate the average payoff

associated with each type. We first separately calculate the average payoff for

offspring and parents.

The average payoff associated with offspring employing TS j is determined

as follows: Let Ao
jj be the payoff an offspring utilizing j receives against parent
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utilizing j. Likewise, Ao
ji refers to the payoff offspring utilizing j receives when

interacting with parent utilizing i. Let Bj refer to the total proportion of off-

spring utilizing TS j. Thus Bj ¼ ð1 � �Þxt
j þ

P
i 6¼j

�xt
i

n� 1
, where xt

j is the propor-

tion of parents at round t utilizing strategy j and � is the chance of mutation.

Note that the first term in this expression refers to offspring with parents

utilizing j, while the second term covers offspring with parents not utilizing

j. Thus ð1 � �Þxt
j=Bj refers to the proportion of offspring utilizing j with

parents that also employ j. Similarly, �
ðn� 1Þ

xt
k=Bj refers to the proportion of

offspring using j with parents using k. Putting these together, we can now

calculate the average payoff for offspring utilizing j (Po
j ):

1

Bj

ð1 � �Þxt
jA

o
jj þ

X
k6¼j

�

n � 1
xt

kAo
jk

" #
:

Calculating the average payoff to parents utilizing j is a bit more straightfor-

ward. Let A
p
jj be the payoff parents receive against an offspring also utilizing j

while A
p
ji is the payoff to parent when paired with an offspring using i. Given that

the chance of mutation is � and when mutations do occur the mutant has an

equal chance of being any of the remaining fifteen types, average payoff to parent

of type j is (P
p
j ): The average payoff to parent of type j is (P

p
j ):

ð1 � �ÞAo
jj þ

X
i 6¼j

�A
p
ji

n � 1
:

Note that since each parent has exactly one child, the proportion of individuals

utilizing TS j is the proportion of parents utilizing j (xt
j) plus the proportion of

children utilizing j (Bj). The average payoff associated with an individual utilizing

TS j (Pj) is thus:

1

Bj þ xt
j

xt
jP

p
j þ BjP

o
j

� �
:

To determine how the population changes over time we appeal to the discrete-

time replicator dynamics. Under the discrete-time replicator dynamics, the pro-

portion of individuals of type j in the next time period is equal to the proportion of

individuals in the current time period that are of type j multiplied by the average

fitness of type j divided by the average fitness of the population as a whole. Thus

for us, the proportion of individuals utilizing TS j in the next time period is:

ðxtþ1
j þ BjÞ

Pj

2P
;

where P is the average payoff across all types ( 1
16

P16
i¼1 Pi).
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A2 Conditions for Full Information Transfer

When the mutation rate is zero, the strategy that goes to fixation is the strategy

that does best against a clone. We consider the conditions under which a

separating strategy (S1–R2 or S2–R1) does best against a clone. It can be

easily shown that of the twelve TS that never constitute an equilibrium,

none of these can do better than the best pooling strategy when paired with

a clone.

Case 1: Pooling strategy S4–R3 outperforms pooling strategy S4–R4

when paired with a clone.

This occurs when (1�m)b + ma > d. Separating strategy S2–R1 does better

than S4–R3 against a clone when (1�m)(d� b)�mc > 0. Similarly, separat-

ing strategy S1–R2 outperforms S4–R3 when d� b� c> 0. In other words,

when the cost associated with signalling is small and the cost associated with

making a transfer is significantly greater than the benefit healthy types receive

from a transfer information transfer is favoured.

Case 2: Pooling strategy S4–R4 outperforms pooling strategy S4–R3

when paired with a clone.

This occurs when (1�m)b + ma< d. The separating strategy S2–R1 does better

than S4–R4 against a clone when a� c� d> 0. Likewise, separating strategy

S1–R2 outperforms pooling strategy S4–R4 when m(a� d)� (1�m)c> 0.

These conditions suggest information transfer is possible when the benefit

needy types receive from a transfer swamps the cost to the receiver as well as

the cost of signalling.
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